TDJSCC: Low Complexity and Bandwidth Efficient Deep Joint Source-Channel Coding With OFDM
The practical deployment of deep joint source-channel coding (DJSCC) in edge devices faces two critical limitations. First, the prohibitive computational complexity of deep neural networks hinders efficiency. Second, existing OFDM-based systems suffer from bandwidth inefficiency due to dedicated pil...
Saved in:
| Published in: | IEEE access Vol. 13; pp. 150244 - 150257 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The practical deployment of deep joint source-channel coding (DJSCC) in edge devices faces two critical limitations. First, the prohibitive computational complexity of deep neural networks hinders efficiency. Second, existing OFDM-based systems suffer from bandwidth inefficiency due to dedicated pilot symbol allocation. To address these challenges, we propose tensorized deep joint source-channel coding (TDJSCC), a novel DJSCC framework that integrates a tensorized convolutional neural network (TCNN) with in-band pilot-augmented orthogonal frequency-division multiplexing (OFDM). The TCNN decomposes high-dimensional convolution kernels into cascaded low-rank tensor operations through singular value decomposition (SVD). Simultaneously, our in-band pilot design eliminates dedicated pilot symbols by strategically replacing data subcarriers with pilot tones. This approach achieves 100% bandwidth efficiency while maintaining channel estimation accuracy through optimized discrete Fourier transform (DFT) interpolation. The simulation results demonstrate that the proposed TDJSCC model outperforms the existing DJSCC model on low-resolution datasets and achieves comparable performance for high-resolution datasets, with 87% fewer parameters and <inline-formula> <tex-math notation="LaTeX">3.1\times </tex-math></inline-formula> floating-point operations (FLOPs) reduction. Furthermore, the proposed TDJSCC achieves improved performance, significantly lower computational complexity, and full bandwidth efficiency. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2025.3602059 |