Systolic givens factorization of dense rectangular matrices

Given an m by n dense matrix A(m≧n) we consider parallel algorithms to compute its orthogonal factorization via Givens rotations. First we describe an algorithm which is executed in m+n- 2 steps on a linear array of [m/2] processors, a step being the time necessary to achieve a Givens rotation. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics Ročník 25; číslo 3-4; s. 287 - 298
Hlavní autoři: Cosnard, Michel, Robert, Yves
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Gordon and Breach Science Publishers 01.01.1988
Taylor and Francis
Taylor & Francis
Témata:
ISSN:0020-7160, 1029-0265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given an m by n dense matrix A(m≧n) we consider parallel algorithms to compute its orthogonal factorization via Givens rotations. First we describe an algorithm which is executed in m+n- 2 steps on a linear array of [m/2] processors, a step being the time necessary to achieve a Givens rotation. The pipelined version of the new algorithm leads to a systolic implementation whose area-time performances overcome those of the arrays of Bojanczyk, Brent and Kung [1] and Gentleman and Kung [5].
ISSN:0020-7160
1029-0265
DOI:10.1080/00207168808803674