Systolic givens factorization of dense rectangular matrices

Given an m by n dense matrix A(m≧n) we consider parallel algorithms to compute its orthogonal factorization via Givens rotations. First we describe an algorithm which is executed in m+n- 2 steps on a linear array of [m/2] processors, a step being the time necessary to achieve a Givens rotation. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer mathematics Jg. 25; H. 3-4; S. 287 - 298
Hauptverfasser: Cosnard, Michel, Robert, Yves
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Gordon and Breach Science Publishers 01.01.1988
Taylor and Francis
Taylor & Francis
Schlagworte:
ISSN:0020-7160, 1029-0265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an m by n dense matrix A(m≧n) we consider parallel algorithms to compute its orthogonal factorization via Givens rotations. First we describe an algorithm which is executed in m+n- 2 steps on a linear array of [m/2] processors, a step being the time necessary to achieve a Givens rotation. The pipelined version of the new algorithm leads to a systolic implementation whose area-time performances overcome those of the arrays of Bojanczyk, Brent and Kung [1] and Gentleman and Kung [5].
ISSN:0020-7160
1029-0265
DOI:10.1080/00207168808803674