Systolic givens factorization of dense rectangular matrices
Given an m by n dense matrix A(m≧n) we consider parallel algorithms to compute its orthogonal factorization via Givens rotations. First we describe an algorithm which is executed in m+n- 2 steps on a linear array of [m/2] processors, a step being the time necessary to achieve a Givens rotation. The...
Uloženo v:
| Vydáno v: | International journal of computer mathematics Ročník 25; číslo 3-4; s. 287 - 298 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Gordon and Breach Science Publishers
01.01.1988
Taylor and Francis Taylor & Francis |
| Témata: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given an m by n dense matrix A(m≧n) we consider parallel algorithms to compute its orthogonal factorization via Givens rotations. First we describe an algorithm which is executed in m+n- 2 steps on a linear array of [m/2] processors, a step being the time necessary to achieve a Givens rotation. The pipelined version of the new algorithm leads to a systolic implementation whose area-time performances overcome those of the arrays of Bojanczyk, Brent and Kung [1] and Gentleman and Kung [5]. |
|---|---|
| ISSN: | 0020-7160 1029-0265 |
| DOI: | 10.1080/00207168808803674 |