Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting

Electricity consumption forecasting plays an important role in investment planning of electricity infrastructure, and in electricity production/generation and distribution. Accurate electricity consumption prediction over the mid/long term is of great interest to both practitioners and academics. Co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energies (Basel) Ročník 14; číslo 13; s. 4036
Hlavní autoři: Deng, Changrui, Zhang, Xiaoyuan, Huang, Yanmei, Bao, Yukun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.07.2021
Témata:
ISSN:1996-1073, 1996-1073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electricity consumption forecasting plays an important role in investment planning of electricity infrastructure, and in electricity production/generation and distribution. Accurate electricity consumption prediction over the mid/long term is of great interest to both practitioners and academics. Considering that monthly electricity consumption series usually show an obvious seasonal variation due to their inherent nature subject to temperature during the year, in this paper, seasonal exponential smoothing (SES) models were employed as the modeling technique, and the particle swarm optimization (PSO) algorithm was applied to find a set of near-optimal smoothing parameters. Quantitative and comprehensive assessments were performed with two real-world electricity consumption datasets on the basis of prediction accuracy and computational cost. The experimental results indicated that (1) whether the accuracy measure or the elapsed time was considered, the PSO performed better than grid search (GS) or genetic algorithm (GA); (2) the proposed PSO-based SES model with a non-trend component and additive seasonality term significantly outperformed other competitors for the majority of prediction horizons, which indicates that the model could be a promising alternative for electricity consumption forecasting.
AbstractList Electricity consumption forecasting plays an important role in investment planning of electricity infrastructure, and in electricity production/generation and distribution. Accurate electricity consumption prediction over the mid/long term is of great interest to both practitioners and academics. Considering that monthly electricity consumption series usually show an obvious seasonal variation due to their inherent nature subject to temperature during the year, in this paper, seasonal exponential smoothing (SES) models were employed as the modeling technique, and the particle swarm optimization (PSO) algorithm was applied to find a set of near-optimal smoothing parameters. Quantitative and comprehensive assessments were performed with two real-world electricity consumption datasets on the basis of prediction accuracy and computational cost. The experimental results indicated that (1) whether the accuracy measure or the elapsed time was considered, the PSO performed better than grid search (GS) or genetic algorithm (GA); (2) the proposed PSO-based SES model with a non-trend component and additive seasonality term significantly outperformed other competitors for the majority of prediction horizons, which indicates that the model could be a promising alternative for electricity consumption forecasting.
Author Zhang, Xiaoyuan
Huang, Yanmei
Deng, Changrui
Bao, Yukun
Author_xml – sequence: 1
  givenname: Changrui
  surname: Deng
  fullname: Deng, Changrui
– sequence: 2
  givenname: Xiaoyuan
  surname: Zhang
  fullname: Zhang, Xiaoyuan
– sequence: 3
  givenname: Yanmei
  surname: Huang
  fullname: Huang, Yanmei
– sequence: 4
  givenname: Yukun
  orcidid: 0000-0001-5418-8799
  surname: Bao
  fullname: Bao, Yukun
BookMark eNptkU9LAzEQxYMoqNWLnyDgTagmme129yil_gFFod7DbDapKbubNUnRevSTm7aiIuaSSfKbF-a9Q7LbuU4TcsLZOUDJLnTHMw4Zg3yHHPCyzIecjWH3V71PjkNYsLQAOAAckI_py9L2ve3mdKYxuA4bOn3rk3AXbapnrXPxef1872rdBPpq4zN9RB-tajSdvaJv6UMfbWvfMVrX0ctm7nyCWmqcp9NGq-itsnFFJ64Ly7bfUFfOa4UhJuUjsmewCfr4ax-Qp6vp0-RmePdwfTu5vBsqyHkcFqKCcS14LkaVyUVldGWMSnMjE2OjFKSTMEJhPYZMjVhRaiiU1hkzouIGBuR2K1s7XMje2xb9Sjq0cnPh_Fx-TSUN46WulUFVsKwwWJiiFALZCDUoAWut061W793LUocoF27pk3dBilFWAjBISQzI2ZZS3oXgtfn-lTO5Tkz-JJZg9gdOnm0cjR5t81_LJ4JSng0
CitedBy_id crossref_primary_10_1007_s11518_024_5590_3
crossref_primary_10_1007_s40815_023_01637_4
crossref_primary_10_1016_j_egyr_2022_09_188
crossref_primary_10_1007_s11571_023_10045_1
crossref_primary_10_3390_atmos14060945
crossref_primary_10_1016_j_matcom_2022_04_004
crossref_primary_10_1016_j_egyr_2022_09_008
crossref_primary_10_1109_ACCESS_2022_3163519
crossref_primary_10_1155_2022_9362283
crossref_primary_10_1016_j_energy_2021_122245
crossref_primary_10_1016_j_infrared_2022_104428
crossref_primary_10_1038_s41598_025_87013_8
crossref_primary_10_1155_2022_2401333
crossref_primary_10_3390_aerospace10080714
crossref_primary_10_1007_s12517_022_10564_x
crossref_primary_10_3390_en14185659
crossref_primary_10_3390_app13116845
crossref_primary_10_3390_en15124196
crossref_primary_10_3390_en16031295
crossref_primary_10_1016_j_apenergy_2022_119420
crossref_primary_10_54097_jceim_v10i1_5368
Cites_doi 10.1016/j.enpol.2008.02.035
10.1016/S0020-0190(02)00447-7
10.1016/j.enpol.2015.10.031
10.1016/j.enconman.2008.08.031
10.1016/j.apenergy.2014.12.011
10.1093/biomet/80.3.623
10.1016/j.energy.2016.04.115
10.1002/for.3980090504
10.1016/j.apenergy.2009.04.024
10.1016/j.energy.2019.116779
10.3390/en13030532
10.3390/en6062927
10.1016/j.energy.2018.05.147
10.1016/j.energy.2009.06.034
10.1016/j.egypro.2017.12.218
10.1016/j.scs.2018.06.019
10.1049/iet-gtd.2016.0340
10.1016/j.asoc.2014.09.007
10.1080/01621459.1997.10473684
10.1016/S0169-2070(01)00110-8
10.1002/for.938
10.1109/TSMCB.2007.904019
10.1057/palgrave.jors.2601589
10.1016/j.apenergy.2020.116114
10.1109/TPWRS.2011.2181981
10.1016/j.ijepes.2014.12.036
10.1016/j.apm.2017.07.010
10.3354/cr030079
10.1016/j.energy.2020.117682
10.1016/j.energy.2014.08.072
10.1016/j.energy.2016.09.065
10.1016/j.ijforecast.2008.07.007
10.1016/j.apenergy.2010.05.018
10.1016/j.enpol.2015.11.028
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14134036
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_f019edcfac8048fa8f8922a05ae3c23f
10_3390_en14134036
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-82b37d21625bf62bfebffc390a027fcc3ffc2f2cad734c5089e38cee40f2b1f3
IEDL.DBID DOA
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671088500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:44:04 EDT 2025
Mon Jun 30 11:18:38 EDT 2025
Sat Nov 29 07:14:08 EST 2025
Tue Nov 18 22:25:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-82b37d21625bf62bfebffc390a027fcc3ffc2f2cad734c5089e38cee40f2b1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5418-8799
OpenAccessLink https://doaj.org/article/f019edcfac8048fa8f8922a05ae3c23f
PQID 2549330341
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_f019edcfac8048fa8f8922a05ae3c23f
proquest_journals_2549330341
crossref_primary_10_3390_en14134036
crossref_citationtrail_10_3390_en14134036
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kaytez (ref_2) 2015; 67
Lin (ref_1) 2016; 88
Ord (ref_23) 1997; 92
ref_35
Zhang (ref_26) 2018; 44
Khuntia (ref_18) 2016; 10
Shen (ref_14) 2017; 142
ref_31
ref_30
AlRashidi (ref_28) 2010; 87
Hong (ref_27) 2009; 50
Hussain (ref_12) 2016; 90
Tiao (ref_22) 1993; 80
Jiang (ref_19) 2020; 193
Taylor (ref_20) 2008; 24
Bianco (ref_5) 2009; 34
Taylor (ref_10) 2003; 54
Yuan (ref_7) 2018; 42
Trelea (ref_32) 2003; 85
Aguiar (ref_15) 2013; 6
Chen (ref_38) 2007; 37
Hyndman (ref_25) 2005; 24
Khosravi (ref_16) 2012; 27
Hyndman (ref_33) 2002; 18
Kialashaki (ref_13) 2014; 76
Wu (ref_3) 2018; 157
Xie (ref_4) 2020; 202
Bianco (ref_11) 2010; 87
Han (ref_34) 2008; 205
Lawal (ref_37) 2021; 283
Vu (ref_6) 2015; 140
Azadeh (ref_8) 2008; 36
Willmott (ref_36) 2005; 30
Tratar (ref_21) 2016; 109
Broze (ref_24) 1990; 9
Xiao (ref_17) 2017; 51
Cao (ref_9) 2016; 115
Hu (ref_29) 2014; 25
References_xml – volume: 36
  start-page: 2637
  year: 2008
  ident: ref_8
  article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.02.035
– volume: 85
  start-page: 317
  year: 2003
  ident: ref_32
  article-title: The particle swarm optimization algorithm: Convergence analysis and parameter selection
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(02)00447-7
– volume: 88
  start-page: 310
  year: 2016
  ident: ref_1
  article-title: Why is electricity consumption inconsistent with economic growth in China?
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.10.031
– volume: 50
  start-page: 105
  year: 2009
  ident: ref_27
  article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2008.08.031
– volume: 140
  start-page: 385
  year: 2015
  ident: ref_6
  article-title: A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.12.011
– volume: 80
  start-page: 623
  year: 1993
  ident: ref_22
  article-title: Robustness of maximum likelihood estimates for multi-step predictions: The exponential smoothing case
  publication-title: Biometrika
  doi: 10.1093/biomet/80.3.623
– volume: 109
  start-page: 266
  year: 2016
  ident: ref_21
  article-title: The comparison of Holt–Winters method and Multiple regression method: A case study
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.115
– volume: 9
  start-page: 445
  year: 1990
  ident: ref_24
  article-title: Exponential smoothing: Estimation by maximum likelihood
  publication-title: J. Forecast.
  doi: 10.1002/for.3980090504
– volume: 87
  start-page: 320
  year: 2010
  ident: ref_28
  article-title: Long term electric load forecasting based on particle swarm optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.04.024
– volume: 193
  start-page: 116779
  year: 2020
  ident: ref_19
  article-title: Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116779
– ident: ref_30
  doi: 10.3390/en13030532
– volume: 6
  start-page: 2927
  year: 2013
  ident: ref_15
  article-title: Experimental Analysis of the Input Variables’ Relevance to Forecast Next Day’s Aggregated Electric Demand Using Neural Networks
  publication-title: Energies
  doi: 10.3390/en6062927
– ident: ref_35
– volume: 157
  start-page: 327
  year: 2018
  ident: ref_3
  article-title: Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.147
– volume: 44
  start-page: 1790
  year: 2018
  ident: ref_26
  article-title: Prediction model with dynamic adjustment for single time series of PM2.5
  publication-title: Acta Autom. Sin.
– volume: 34
  start-page: 1413
  year: 2009
  ident: ref_5
  article-title: Electricity consumption forecasting in Italy using linear regression models
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.034
– volume: 142
  start-page: 2734
  year: 2017
  ident: ref_14
  article-title: Household Electricity Consumption Prediction Under Multiple Behavioural Intervention Strategies Using Support Vector Regression
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.218
– volume: 42
  start-page: 82
  year: 2018
  ident: ref_7
  article-title: Predictive artificial neural network models to forecast the seasonal hourly electricity consumption for a University Campus
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.06.019
– volume: 10
  start-page: 3971
  year: 2016
  ident: ref_18
  article-title: Forecasting the load of electrical power systems in mid- and long-term horizons: A review
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2016.0340
– volume: 25
  start-page: 15
  year: 2014
  ident: ref_29
  article-title: Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.09.007
– volume: 92
  start-page: 1621
  year: 1997
  ident: ref_23
  article-title: Estimation and prediction for a class of dynamic nonlinear statistical models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1997.10473684
– volume: 18
  start-page: 439
  year: 2002
  ident: ref_33
  article-title: A state space framework for automatic forecasting using exponential smoothing methods
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(01)00110-8
– volume: 24
  start-page: 17
  year: 2005
  ident: ref_25
  article-title: Prediction intervals for exponential smoothing using two new classes of state space models
  publication-title: J. Forecast.
  doi: 10.1002/for.938
– ident: ref_31
– volume: 37
  start-page: 1460
  year: 2007
  ident: ref_38
  article-title: Particle Swarm Optimization With Recombination and Dynamic Linkage Discovery
  publication-title: IEEE Trans. Syst Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2007.904019
– volume: 54
  start-page: 799
  year: 2003
  ident: ref_10
  article-title: Short-term electricity demand forecasting using double seasonal exponential smoothing
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601589
– volume: 283
  start-page: 116114
  year: 2021
  ident: ref_37
  article-title: Orthogonalization and machine learning methods for residential energy estimation with social and economic indicators
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116114
– volume: 27
  start-page: 1274
  year: 2012
  ident: ref_16
  article-title: Interval Type-2 Fuzzy Logic Systems for Load Forecasting: A Comparative Study
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2181981
– volume: 67
  start-page: 431
  year: 2015
  ident: ref_2
  article-title: Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.12.036
– volume: 51
  start-page: 386
  year: 2017
  ident: ref_17
  article-title: An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.07.010
– volume: 205
  start-page: 792
  year: 2008
  ident: ref_34
  article-title: A new approach for function approximation incorporating adaptive particle swarm optimization and a priori information
  publication-title: Appl. Math. Comput.
– volume: 30
  start-page: 79
  year: 2005
  ident: ref_36
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– volume: 202
  start-page: 117682
  year: 2020
  ident: ref_4
  article-title: Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117682
– volume: 76
  start-page: 749
  year: 2014
  ident: ref_13
  article-title: Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.072
– volume: 115
  start-page: 734
  year: 2016
  ident: ref_9
  article-title: Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.065
– volume: 24
  start-page: 645
  year: 2008
  ident: ref_20
  article-title: An evaluation of methods for very short-term load forecasting using minute-by-minute British data
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2008.07.007
– volume: 87
  start-page: 3584
  year: 2010
  ident: ref_11
  article-title: Analysis and forecasting of nonresidential electricity consumption in Romania
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.05.018
– volume: 90
  start-page: 73
  year: 2016
  ident: ref_12
  article-title: Forecasting electricity consumption in Pakistan: The way forward
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.11.028
SSID ssj0000331333
Score 2.4158452
Snippet Electricity consumption forecasting plays an important role in investment planning of electricity infrastructure, and in electricity production/generation and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4036
SubjectTerms Accuracy
Artificial intelligence
Electricity
electricity consumption forecasting
Forecasting
genetic algorithm
grid search method
Methods
Optimization algorithms
particle swarm optimization algorithm
Random variables
seasonal exponential smoothing models
Seasonal variations
Support vector machines
Time series
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4thQMcluUlujxkCS4cIhI75HFaAQrigEpFEeIW2Y5dKvVFU3b3vL98Z1y3XYkVF255OJLjcT7PNxl_A3AaalUlIjWBkjYNYk2blY28CHKTInVLslQ6uaanu7TVyp6f87YPuNU-rXKOiQ6oq5GmGPk5ERnk3gi6P8avAVWNor-rvoTGCqySUlncgNWrotV-WERZQiGQhImZLqlAfn9uhhHidhw6TeblSuQE-9_hsVtkbjY_271v8NW7l-xyNh-24IsZbsPGP6KDO_CneH1zqgxd1jHSeeKs-D0eDSlvCI87gxFaj25TnbR-zShUy9p-irHOLzkZsHtEmoHfwsku-13syvRlwNADZoUrrNPT6N6za7fB06ESoyKgWtaUZr0LjzfF4_Vt4CsxBFok0TTIuBJpxSMkS8omXFmjrNU4nBJZrdVa4Bm3XMsqFbFGny83IsPlNw4tV5EVe9AY4mvsA1MqCWWSc-S_VZxJ5McaH4tsmqPnoETVhLO5UUrtVcqpWEa_RLZCBiyXBmzCyaLteKbN8d9WV2TbRQvS03YXRpNu6ceutOjpmkpbqTOENCszm-Wcy_BCGuygsE04nJu99B95XS5t_v3j2wewzikVxmX5HkJjOnkzR7Cmf0579eTYz9m_KW37ag
  priority: 102
  providerName: ProQuest
Title Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting
URI https://www.proquest.com/docview/2549330341
https://doaj.org/article/f019edcfac8048fa8f8922a05ae3c23f
Volume 14
WOSCitedRecordID wos000671088500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6ketCD-MRqLQt68RCa7KZ5HNuSomBrsEXqKexudkuhL_tQTx785c5uUltQ8OIlJJsJyU4mM_OF2W8QurYFTz3qS4sz5Vuu0IuVJataofQBunmBzwxd09O9324HvV4Yb7T60jVhGT1wpriKghxEpkIxEYCxKRaoICSE2VUmqSBUae8LWc8GmDI-mFIAXzTjI6WA6yty7IC_dm3DxbyOQIao_4cfNsGleYD286wQ17KnOURbcnyE9ja4Ao_RZ_SyNGQKfdyRzCTQOHqfTsa63Af2O6MJKF2f1u3NhnOs_7DiOJ8g7ryx2Qg_gIMY5SsvcW3Yn8xAaIQhccWR6YczEJCV44ZZl2mcCda9OwWb6-roE9RtRt3GrZU3ULAE9ZyFFRBO_ZQ4gHG48ghXkislQBsMwKgSgsIRUUSw1KeugFQtlDSAqOnainBH0VNUGMM0zhDm3LOZFxKArakbMIC1Ai5zlB9CwOc0LaKblU4TkZOL6x4XwwRAhtZ_stZ_EV19y04zSo1fper61XxLaBpsMwDGkeS6S_4yjiIqrV5skn-b80RDYgqR23XO_-MeF2iX6DoXU8JbQoXFbCkv0Y54XQzmszLarkft-LFszBO2rY8IxuK7Vvz8BXyD8c0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtswEB2kToGmh-5FnaQtgbaHHoRIpCJRh6DI4iBGHNeAjSI9ESRFOgG8xXK2a_-n_5ghLdkBWvSWQ2-SSAki9Tgzj5oF4HOoVZ6w1ARK2jSItQtWNnI7yEyK1C3hqfTpmn600nabn55mnRX4XcXCOLfKSiZ6QZ2Ptdsj33JEBrk3Ct1vk4vAVY1yf1erEhpzWByb22ukbMVO8wC_7xdKDxu9_aOgrCoQaJZEs4BTxdKcRmj4K5tQZY2yViP1l8jQrNYMz6ilWuYpizXaL5lhHFVJHFqqIsvwsY9gNUas8xqsdponnZ-LTZ2QMeR8bJ4GleEzt8woQjURhz4F9FLx-foAf4h_r9MOn_9ns_ECnpXGM9mdo_0lrJjRK3h6L6Xia_jVuLj0OSf6pGuk5xmkcTMZj5xXFB53h2PEpmt2VeAGBXEb0aRTLiDSvZbTIfmOcnRYBqiS3UEfRz47GxK070nDlw0610heyL4PX_Uyl7gSp1oWzon8DfQeYg7eQm2Ew3gHRKkklElGkd3nMZfI_jXeFtk0Q7tIsbwOXysMCF3mYHelQAYCuZjDi1jipQ6fFn0n88wjf-2156C06OGyhfsL42lflHMnLNrxJtdWao4C20pueUapDLelwRdktg6bFcpEKcIKsYTY-r-bP8KTo95JS7Sa7eMNWKPO6cf7M29CbTa9NO_hsb6anRfTD-VyISAeGJJ3gM9a5Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aG0LswOcQHQMsAQcOURM7S5wDQmNrRbVRInVC42TZjl0m9WtNx-DKf8V_x7PrtEggbjtwS2Inip2f33s_530AvIy1qjKWm0hJm0epdsHKRu5HhcmRumU8lz5d06eTvN_nZ2dFuQE_m1gY51bZyEQvqKupdnvkbUdkkHuj0G3b4BZRHnXfzi4iV0HK_WltymksIXJsvl8hfavf9I7wW7-itNs5PXwfhQoDkWZZsog4VSyvaIIkQNmMKmuUtZoVsUS2ZrVmeEYt1bLKWarRlikM46hW0thSlViGj70BW2iRp7jEtsreh_LzaoMnZgz5H1umRGX4zLaZJKgy0ting14rQV8r4A9V4PVb9-5_PDP34E4wqsnBchXchw0zeQDbv6VafAg_OheXPhfFkAyM9PyDdL7NphPnLYXHg_EUMeuaXXW4UU3cBjUpw8Iigys5H5OPKF_HIXCVHIyGOPLFlzFBu590fDmhc42khhz6sFYvi4krfapl7ZzLd-D0OubgEWxOcBiPgSiVxTIrKLL-KuWScabxtsTmBdpLilUteN3gQeiQm92VCBkJ5GgOO2KNnRa8WPWdLTOS_LXXOwerVQ-XRdxfmM6HIsydsGjfm0pbqTkKciu55QWlMt6XBl-Q2RbsNYgTQbTVYg233X83P4dbiENx0usfP4Hb1PkCeTfnPdhczC_NU7ipvy7O6_mzsHIIiGtG5C-SsGOl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equipping+Seasonal+Exponential+Smoothing+Models+with+Particle+Swarm+Optimization+Algorithm+for+Electricity+Consumption+Forecasting&rft.jtitle=Energies+%28Basel%29&rft.au=Changrui+Deng&rft.au=Xiaoyuan+Zhang&rft.au=Yanmei+Huang&rft.au=Yukun+Bao&rft.date=2021-07-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=13&rft.spage=4036&rft_id=info:doi/10.3390%2Fen14134036&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f019edcfac8048fa8f8922a05ae3c23f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon