Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting
Electricity consumption forecasting plays an important role in investment planning of electricity infrastructure, and in electricity production/generation and distribution. Accurate electricity consumption prediction over the mid/long term is of great interest to both practitioners and academics. Co...
Uloženo v:
| Vydáno v: | Energies (Basel) Ročník 14; číslo 13; s. 4036 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.07.2021
|
| Témata: | |
| ISSN: | 1996-1073, 1996-1073 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Electricity consumption forecasting plays an important role in investment planning of electricity infrastructure, and in electricity production/generation and distribution. Accurate electricity consumption prediction over the mid/long term is of great interest to both practitioners and academics. Considering that monthly electricity consumption series usually show an obvious seasonal variation due to their inherent nature subject to temperature during the year, in this paper, seasonal exponential smoothing (SES) models were employed as the modeling technique, and the particle swarm optimization (PSO) algorithm was applied to find a set of near-optimal smoothing parameters. Quantitative and comprehensive assessments were performed with two real-world electricity consumption datasets on the basis of prediction accuracy and computational cost. The experimental results indicated that (1) whether the accuracy measure or the elapsed time was considered, the PSO performed better than grid search (GS) or genetic algorithm (GA); (2) the proposed PSO-based SES model with a non-trend component and additive seasonality term significantly outperformed other competitors for the majority of prediction horizons, which indicates that the model could be a promising alternative for electricity consumption forecasting. |
|---|---|
| AbstractList | Electricity consumption forecasting plays an important role in investment planning of electricity infrastructure, and in electricity production/generation and distribution. Accurate electricity consumption prediction over the mid/long term is of great interest to both practitioners and academics. Considering that monthly electricity consumption series usually show an obvious seasonal variation due to their inherent nature subject to temperature during the year, in this paper, seasonal exponential smoothing (SES) models were employed as the modeling technique, and the particle swarm optimization (PSO) algorithm was applied to find a set of near-optimal smoothing parameters. Quantitative and comprehensive assessments were performed with two real-world electricity consumption datasets on the basis of prediction accuracy and computational cost. The experimental results indicated that (1) whether the accuracy measure or the elapsed time was considered, the PSO performed better than grid search (GS) or genetic algorithm (GA); (2) the proposed PSO-based SES model with a non-trend component and additive seasonality term significantly outperformed other competitors for the majority of prediction horizons, which indicates that the model could be a promising alternative for electricity consumption forecasting. |
| Author | Zhang, Xiaoyuan Huang, Yanmei Deng, Changrui Bao, Yukun |
| Author_xml | – sequence: 1 givenname: Changrui surname: Deng fullname: Deng, Changrui – sequence: 2 givenname: Xiaoyuan surname: Zhang fullname: Zhang, Xiaoyuan – sequence: 3 givenname: Yanmei surname: Huang fullname: Huang, Yanmei – sequence: 4 givenname: Yukun orcidid: 0000-0001-5418-8799 surname: Bao fullname: Bao, Yukun |
| BookMark | eNptkU9LAzEQxYMoqNWLnyDgTagmme129yil_gFFod7DbDapKbubNUnRevSTm7aiIuaSSfKbF-a9Q7LbuU4TcsLZOUDJLnTHMw4Zg3yHHPCyzIecjWH3V71PjkNYsLQAOAAckI_py9L2ve3mdKYxuA4bOn3rk3AXbapnrXPxef1872rdBPpq4zN9RB-tajSdvaJv6UMfbWvfMVrX0ctm7nyCWmqcp9NGq-itsnFFJ64Ly7bfUFfOa4UhJuUjsmewCfr4ax-Qp6vp0-RmePdwfTu5vBsqyHkcFqKCcS14LkaVyUVldGWMSnMjE2OjFKSTMEJhPYZMjVhRaiiU1hkzouIGBuR2K1s7XMje2xb9Sjq0cnPh_Fx-TSUN46WulUFVsKwwWJiiFALZCDUoAWut061W793LUocoF27pk3dBilFWAjBISQzI2ZZS3oXgtfn-lTO5Tkz-JJZg9gdOnm0cjR5t81_LJ4JSng0 |
| CitedBy_id | crossref_primary_10_1007_s11518_024_5590_3 crossref_primary_10_1007_s40815_023_01637_4 crossref_primary_10_1016_j_egyr_2022_09_188 crossref_primary_10_1007_s11571_023_10045_1 crossref_primary_10_3390_atmos14060945 crossref_primary_10_1016_j_matcom_2022_04_004 crossref_primary_10_1016_j_egyr_2022_09_008 crossref_primary_10_1109_ACCESS_2022_3163519 crossref_primary_10_1155_2022_9362283 crossref_primary_10_1016_j_energy_2021_122245 crossref_primary_10_1016_j_infrared_2022_104428 crossref_primary_10_1038_s41598_025_87013_8 crossref_primary_10_1155_2022_2401333 crossref_primary_10_3390_aerospace10080714 crossref_primary_10_1007_s12517_022_10564_x crossref_primary_10_3390_en14185659 crossref_primary_10_3390_app13116845 crossref_primary_10_3390_en15124196 crossref_primary_10_3390_en16031295 crossref_primary_10_1016_j_apenergy_2022_119420 crossref_primary_10_54097_jceim_v10i1_5368 |
| Cites_doi | 10.1016/j.enpol.2008.02.035 10.1016/S0020-0190(02)00447-7 10.1016/j.enpol.2015.10.031 10.1016/j.enconman.2008.08.031 10.1016/j.apenergy.2014.12.011 10.1093/biomet/80.3.623 10.1016/j.energy.2016.04.115 10.1002/for.3980090504 10.1016/j.apenergy.2009.04.024 10.1016/j.energy.2019.116779 10.3390/en13030532 10.3390/en6062927 10.1016/j.energy.2018.05.147 10.1016/j.energy.2009.06.034 10.1016/j.egypro.2017.12.218 10.1016/j.scs.2018.06.019 10.1049/iet-gtd.2016.0340 10.1016/j.asoc.2014.09.007 10.1080/01621459.1997.10473684 10.1016/S0169-2070(01)00110-8 10.1002/for.938 10.1109/TSMCB.2007.904019 10.1057/palgrave.jors.2601589 10.1016/j.apenergy.2020.116114 10.1109/TPWRS.2011.2181981 10.1016/j.ijepes.2014.12.036 10.1016/j.apm.2017.07.010 10.3354/cr030079 10.1016/j.energy.2020.117682 10.1016/j.energy.2014.08.072 10.1016/j.energy.2016.09.065 10.1016/j.ijforecast.2008.07.007 10.1016/j.apenergy.2010.05.018 10.1016/j.enpol.2015.11.028 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en14134036 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_f019edcfac8048fa8f8922a05ae3c23f 10_3390_en14134036 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-82b37d21625bf62bfebffc390a027fcc3ffc2f2cad734c5089e38cee40f2b1f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671088500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:44:04 EDT 2025 Mon Jun 30 11:18:38 EDT 2025 Sat Nov 29 07:14:08 EST 2025 Tue Nov 18 22:25:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-82b37d21625bf62bfebffc390a027fcc3ffc2f2cad734c5089e38cee40f2b1f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5418-8799 |
| OpenAccessLink | https://doaj.org/article/f019edcfac8048fa8f8922a05ae3c23f |
| PQID | 2549330341 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f019edcfac8048fa8f8922a05ae3c23f proquest_journals_2549330341 crossref_primary_10_3390_en14134036 crossref_citationtrail_10_3390_en14134036 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kaytez (ref_2) 2015; 67 Lin (ref_1) 2016; 88 Ord (ref_23) 1997; 92 ref_35 Zhang (ref_26) 2018; 44 Khuntia (ref_18) 2016; 10 Shen (ref_14) 2017; 142 ref_31 ref_30 AlRashidi (ref_28) 2010; 87 Hong (ref_27) 2009; 50 Hussain (ref_12) 2016; 90 Tiao (ref_22) 1993; 80 Jiang (ref_19) 2020; 193 Taylor (ref_20) 2008; 24 Bianco (ref_5) 2009; 34 Taylor (ref_10) 2003; 54 Yuan (ref_7) 2018; 42 Trelea (ref_32) 2003; 85 Aguiar (ref_15) 2013; 6 Chen (ref_38) 2007; 37 Hyndman (ref_25) 2005; 24 Khosravi (ref_16) 2012; 27 Hyndman (ref_33) 2002; 18 Kialashaki (ref_13) 2014; 76 Wu (ref_3) 2018; 157 Xie (ref_4) 2020; 202 Bianco (ref_11) 2010; 87 Han (ref_34) 2008; 205 Lawal (ref_37) 2021; 283 Vu (ref_6) 2015; 140 Azadeh (ref_8) 2008; 36 Willmott (ref_36) 2005; 30 Tratar (ref_21) 2016; 109 Broze (ref_24) 1990; 9 Xiao (ref_17) 2017; 51 Cao (ref_9) 2016; 115 Hu (ref_29) 2014; 25 |
| References_xml | – volume: 36 start-page: 2637 year: 2008 ident: ref_8 article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran publication-title: Energy Policy doi: 10.1016/j.enpol.2008.02.035 – volume: 85 start-page: 317 year: 2003 ident: ref_32 article-title: The particle swarm optimization algorithm: Convergence analysis and parameter selection publication-title: Inf. Process. Lett. doi: 10.1016/S0020-0190(02)00447-7 – volume: 88 start-page: 310 year: 2016 ident: ref_1 article-title: Why is electricity consumption inconsistent with economic growth in China? publication-title: Energy Policy doi: 10.1016/j.enpol.2015.10.031 – volume: 50 start-page: 105 year: 2009 ident: ref_27 article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.08.031 – volume: 140 start-page: 385 year: 2015 ident: ref_6 article-title: A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.12.011 – volume: 80 start-page: 623 year: 1993 ident: ref_22 article-title: Robustness of maximum likelihood estimates for multi-step predictions: The exponential smoothing case publication-title: Biometrika doi: 10.1093/biomet/80.3.623 – volume: 109 start-page: 266 year: 2016 ident: ref_21 article-title: The comparison of Holt–Winters method and Multiple regression method: A case study publication-title: Energy doi: 10.1016/j.energy.2016.04.115 – volume: 9 start-page: 445 year: 1990 ident: ref_24 article-title: Exponential smoothing: Estimation by maximum likelihood publication-title: J. Forecast. doi: 10.1002/for.3980090504 – volume: 87 start-page: 320 year: 2010 ident: ref_28 article-title: Long term electric load forecasting based on particle swarm optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.04.024 – volume: 193 start-page: 116779 year: 2020 ident: ref_19 article-title: Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption publication-title: Energy doi: 10.1016/j.energy.2019.116779 – ident: ref_30 doi: 10.3390/en13030532 – volume: 6 start-page: 2927 year: 2013 ident: ref_15 article-title: Experimental Analysis of the Input Variables’ Relevance to Forecast Next Day’s Aggregated Electric Demand Using Neural Networks publication-title: Energies doi: 10.3390/en6062927 – ident: ref_35 – volume: 157 start-page: 327 year: 2018 ident: ref_3 article-title: Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China publication-title: Energy doi: 10.1016/j.energy.2018.05.147 – volume: 44 start-page: 1790 year: 2018 ident: ref_26 article-title: Prediction model with dynamic adjustment for single time series of PM2.5 publication-title: Acta Autom. Sin. – volume: 34 start-page: 1413 year: 2009 ident: ref_5 article-title: Electricity consumption forecasting in Italy using linear regression models publication-title: Energy doi: 10.1016/j.energy.2009.06.034 – volume: 142 start-page: 2734 year: 2017 ident: ref_14 article-title: Household Electricity Consumption Prediction Under Multiple Behavioural Intervention Strategies Using Support Vector Regression publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.12.218 – volume: 42 start-page: 82 year: 2018 ident: ref_7 article-title: Predictive artificial neural network models to forecast the seasonal hourly electricity consumption for a University Campus publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.06.019 – volume: 10 start-page: 3971 year: 2016 ident: ref_18 article-title: Forecasting the load of electrical power systems in mid- and long-term horizons: A review publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2016.0340 – volume: 25 start-page: 15 year: 2014 ident: ref_29 article-title: Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.09.007 – volume: 92 start-page: 1621 year: 1997 ident: ref_23 article-title: Estimation and prediction for a class of dynamic nonlinear statistical models publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1997.10473684 – volume: 18 start-page: 439 year: 2002 ident: ref_33 article-title: A state space framework for automatic forecasting using exponential smoothing methods publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(01)00110-8 – volume: 24 start-page: 17 year: 2005 ident: ref_25 article-title: Prediction intervals for exponential smoothing using two new classes of state space models publication-title: J. Forecast. doi: 10.1002/for.938 – ident: ref_31 – volume: 37 start-page: 1460 year: 2007 ident: ref_38 article-title: Particle Swarm Optimization With Recombination and Dynamic Linkage Discovery publication-title: IEEE Trans. Syst Man Cybern. B Cybern. doi: 10.1109/TSMCB.2007.904019 – volume: 54 start-page: 799 year: 2003 ident: ref_10 article-title: Short-term electricity demand forecasting using double seasonal exponential smoothing publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601589 – volume: 283 start-page: 116114 year: 2021 ident: ref_37 article-title: Orthogonalization and machine learning methods for residential energy estimation with social and economic indicators publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.116114 – volume: 27 start-page: 1274 year: 2012 ident: ref_16 article-title: Interval Type-2 Fuzzy Logic Systems for Load Forecasting: A Comparative Study publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2181981 – volume: 67 start-page: 431 year: 2015 ident: ref_2 article-title: Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.12.036 – volume: 51 start-page: 386 year: 2017 ident: ref_17 article-title: An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.07.010 – volume: 205 start-page: 792 year: 2008 ident: ref_34 article-title: A new approach for function approximation incorporating adaptive particle swarm optimization and a priori information publication-title: Appl. Math. Comput. – volume: 30 start-page: 79 year: 2005 ident: ref_36 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – volume: 202 start-page: 117682 year: 2020 ident: ref_4 article-title: Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction publication-title: Energy doi: 10.1016/j.energy.2020.117682 – volume: 76 start-page: 749 year: 2014 ident: ref_13 article-title: Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States publication-title: Energy doi: 10.1016/j.energy.2014.08.072 – volume: 115 start-page: 734 year: 2016 ident: ref_9 article-title: Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting publication-title: Energy doi: 10.1016/j.energy.2016.09.065 – volume: 24 start-page: 645 year: 2008 ident: ref_20 article-title: An evaluation of methods for very short-term load forecasting using minute-by-minute British data publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2008.07.007 – volume: 87 start-page: 3584 year: 2010 ident: ref_11 article-title: Analysis and forecasting of nonresidential electricity consumption in Romania publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.05.018 – volume: 90 start-page: 73 year: 2016 ident: ref_12 article-title: Forecasting electricity consumption in Pakistan: The way forward publication-title: Energy Policy doi: 10.1016/j.enpol.2015.11.028 |
| SSID | ssj0000331333 |
| Score | 2.4158452 |
| Snippet | Electricity consumption forecasting plays an important role in investment planning of electricity infrastructure, and in electricity production/generation and... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4036 |
| SubjectTerms | Accuracy Artificial intelligence Electricity electricity consumption forecasting Forecasting genetic algorithm grid search method Methods Optimization algorithms particle swarm optimization algorithm Random variables seasonal exponential smoothing models Seasonal variations Support vector machines Time series |
| SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4thQMcluUlujxkCS4cIhI75HFaAQrigEpFEeIW2Y5dKvVFU3b3vL98Z1y3XYkVF255OJLjcT7PNxl_A3AaalUlIjWBkjYNYk2blY28CHKTInVLslQ6uaanu7TVyp6f87YPuNU-rXKOiQ6oq5GmGPk5ERnk3gi6P8avAVWNor-rvoTGCqySUlncgNWrotV-WERZQiGQhImZLqlAfn9uhhHidhw6TeblSuQE-9_hsVtkbjY_271v8NW7l-xyNh-24IsZbsPGP6KDO_CneH1zqgxd1jHSeeKs-D0eDSlvCI87gxFaj25TnbR-zShUy9p-irHOLzkZsHtEmoHfwsku-13syvRlwNADZoUrrNPT6N6za7fB06ESoyKgWtaUZr0LjzfF4_Vt4CsxBFok0TTIuBJpxSMkS8omXFmjrNU4nBJZrdVa4Bm3XMsqFbFGny83IsPlNw4tV5EVe9AY4mvsA1MqCWWSc-S_VZxJ5McaH4tsmqPnoETVhLO5UUrtVcqpWEa_RLZCBiyXBmzCyaLteKbN8d9WV2TbRQvS03YXRpNu6ceutOjpmkpbqTOENCszm-Wcy_BCGuygsE04nJu99B95XS5t_v3j2wewzikVxmX5HkJjOnkzR7Cmf0579eTYz9m_KW37ag priority: 102 providerName: ProQuest |
| Title | Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting |
| URI | https://www.proquest.com/docview/2549330341 https://doaj.org/article/f019edcfac8048fa8f8922a05ae3c23f |
| Volume | 14 |
| WOSCitedRecordID | wos000671088500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6ketCD-MRqLQt68RCa7KZ5HNuSomBrsEXqKexudkuhL_tQTx785c5uUltQ8OIlJJsJyU4mM_OF2W8QurYFTz3qS4sz5Vuu0IuVJataofQBunmBzwxd09O9324HvV4Yb7T60jVhGT1wpriKghxEpkIxEYCxKRaoICSE2VUmqSBUae8LWc8GmDI-mFIAXzTjI6WA6yty7IC_dm3DxbyOQIao_4cfNsGleYD286wQ17KnOURbcnyE9ja4Ao_RZ_SyNGQKfdyRzCTQOHqfTsa63Af2O6MJKF2f1u3NhnOs_7DiOJ8g7ryx2Qg_gIMY5SsvcW3Yn8xAaIQhccWR6YczEJCV44ZZl2mcCda9OwWb6-roE9RtRt3GrZU3ULAE9ZyFFRBO_ZQ4gHG48ghXkislQBsMwKgSgsIRUUSw1KeugFQtlDSAqOnainBH0VNUGMM0zhDm3LOZFxKArakbMIC1Ai5zlB9CwOc0LaKblU4TkZOL6x4XwwRAhtZ_stZ_EV19y04zSo1fper61XxLaBpsMwDGkeS6S_4yjiIqrV5skn-b80RDYgqR23XO_-MeF2iX6DoXU8JbQoXFbCkv0Y54XQzmszLarkft-LFszBO2rY8IxuK7Vvz8BXyD8c0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtswEB2kToGmh-5FnaQtgbaHHoRIpCJRh6DI4iBGHNeAjSI9ESRFOgG8xXK2a_-n_5ghLdkBWvSWQ2-SSAki9Tgzj5oF4HOoVZ6w1ARK2jSItQtWNnI7yEyK1C3hqfTpmn600nabn55mnRX4XcXCOLfKSiZ6QZ2Ptdsj33JEBrk3Ct1vk4vAVY1yf1erEhpzWByb22ukbMVO8wC_7xdKDxu9_aOgrCoQaJZEs4BTxdKcRmj4K5tQZY2yViP1l8jQrNYMz6ilWuYpizXaL5lhHFVJHFqqIsvwsY9gNUas8xqsdponnZ-LTZ2QMeR8bJ4GleEzt8woQjURhz4F9FLx-foAf4h_r9MOn_9ns_ECnpXGM9mdo_0lrJjRK3h6L6Xia_jVuLj0OSf6pGuk5xmkcTMZj5xXFB53h2PEpmt2VeAGBXEb0aRTLiDSvZbTIfmOcnRYBqiS3UEfRz47GxK070nDlw0610heyL4PX_Uyl7gSp1oWzon8DfQeYg7eQm2Ew3gHRKkklElGkd3nMZfI_jXeFtk0Q7tIsbwOXysMCF3mYHelQAYCuZjDi1jipQ6fFn0n88wjf-2156C06OGyhfsL42lflHMnLNrxJtdWao4C20pueUapDLelwRdktg6bFcpEKcIKsYTY-r-bP8KTo95JS7Sa7eMNWKPO6cf7M29CbTa9NO_hsb6anRfTD-VyISAeGJJ3gM9a5Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aG0LswOcQHQMsAQcOURM7S5wDQmNrRbVRInVC42TZjl0m9WtNx-DKf8V_x7PrtEggbjtwS2Inip2f33s_530AvIy1qjKWm0hJm0epdsHKRu5HhcmRumU8lz5d06eTvN_nZ2dFuQE_m1gY51bZyEQvqKupdnvkbUdkkHuj0G3b4BZRHnXfzi4iV0HK_WltymksIXJsvl8hfavf9I7wW7-itNs5PXwfhQoDkWZZsog4VSyvaIIkQNmMKmuUtZoVsUS2ZrVmeEYt1bLKWarRlikM46hW0thSlViGj70BW2iRp7jEtsreh_LzaoMnZgz5H1umRGX4zLaZJKgy0ting14rQV8r4A9V4PVb9-5_PDP34E4wqsnBchXchw0zeQDbv6VafAg_OheXPhfFkAyM9PyDdL7NphPnLYXHg_EUMeuaXXW4UU3cBjUpw8Iigys5H5OPKF_HIXCVHIyGOPLFlzFBu590fDmhc42khhz6sFYvi4krfapl7ZzLd-D0OubgEWxOcBiPgSiVxTIrKLL-KuWScabxtsTmBdpLilUteN3gQeiQm92VCBkJ5GgOO2KNnRa8WPWdLTOS_LXXOwerVQ-XRdxfmM6HIsydsGjfm0pbqTkKciu55QWlMt6XBl-Q2RbsNYgTQbTVYg233X83P4dbiENx0usfP4Hb1PkCeTfnPdhczC_NU7ipvy7O6_mzsHIIiGtG5C-SsGOl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equipping+Seasonal+Exponential+Smoothing+Models+with+Particle+Swarm+Optimization+Algorithm+for+Electricity+Consumption+Forecasting&rft.jtitle=Energies+%28Basel%29&rft.au=Changrui+Deng&rft.au=Xiaoyuan+Zhang&rft.au=Yanmei+Huang&rft.au=Yukun+Bao&rft.date=2021-07-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=13&rft.spage=4036&rft_id=info:doi/10.3390%2Fen14134036&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f019edcfac8048fa8f8922a05ae3c23f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |