Bit-Reliability Based Low-Complexity Decoding Algorithms for Non-Binary LDPC Codes

This paper presents bit-reliability based majority-logic decoding (MLgD) algorithms for non-binary LDPC codes. The proposed algorithms pass only one Galois field element and its reliability along each edge of the Tanner graph of a non-binary LDPC code. Since their reliability updates are in terms of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on communications Ročník 62; číslo 12; s. 4230 - 4240
Hlavní autori: Huang, Qin, Zhang, Mu, Wang, Zulin, Wang, Lu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0090-6778, 1558-0857
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents bit-reliability based majority-logic decoding (MLgD) algorithms for non-binary LDPC codes. The proposed algorithms pass only one Galois field element and its reliability along each edge of the Tanner graph of a non-binary LDPC code. Since their reliability updates are in terms of bits rather than symbols, they are more efficient than traditional MLgD based decoding algorithms. By weighting the soft reliability of the extrinsic information-sums based on their hard reliability, the proposed algorithms can achieve good error performance for non-binary LDPC codes with various column weights. Moreover, their computational complexity and memory consumption are remarkably reduced compared with existing MLgD based decoding algorithms. As a result, they provide effective tradeoffs between error performance and complexity for decoding of non-binary LDPC codes.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2014.2370032