Radar Emitter Identification Based on Novel Time-Frequency Spectrum and Convolutional Neural Network

Radar emitter identification (REI) is significant in both military and civilian application domains. A critical step for REI is signal feature extraction. Most radar emitter signals are non-stationary, and many studies apply time-frequency spectrum features for non-stationary signal analysis in rece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters Jg. 25; H. 8; S. 2634 - 2638
Hauptverfasser: Xiao, Zhiling, Yan, Zhenya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-7798, 1558-2558
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Radar emitter identification (REI) is significant in both military and civilian application domains. A critical step for REI is signal feature extraction. Most radar emitter signals are non-stationary, and many studies apply time-frequency spectrum features for non-stationary signal analysis in recent years. This letter proposes a novel spectrum calculation method for signal feature analysis using short-time Fourier transform (STFT) and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means algorithm. We first compute the time-frequency spectrograms of emitter signals by the proposed method. And we apply the convolutional neural network (CNN) for automatic identification based on the time-frequency images. In the experiment, we simulate different emitter signals for performance evaluation and compare our method with the spectrum analysis methods adopted in the literature. The results prove that our method can achieve excellent performance and has strong robustness in the condition of low signal-to-noise ratio (SNR), and our time-frequency analysis method works well in real-time.
AbstractList Radar emitter identification (REI) is significant in both military and civilian application domains. A critical step for REI is signal feature extraction. Most radar emitter signals are non-stationary, and many studies apply time-frequency spectrum features for non-stationary signal analysis in recent years. This letter proposes a novel spectrum calculation method for signal feature analysis using short-time Fourier transform (STFT) and [Formula Omitted]-means algorithm. We first compute the time-frequency spectrograms of emitter signals by the proposed method. And we apply the convolutional neural network (CNN) for automatic identification based on the time-frequency images. In the experiment, we simulate different emitter signals for performance evaluation and compare our method with the spectrum analysis methods adopted in the literature. The results prove that our method can achieve excellent performance and has strong robustness in the condition of low signal-to-noise ratio (SNR), and our time-frequency analysis method works well in real-time.
Radar emitter identification (REI) is significant in both military and civilian application domains. A critical step for REI is signal feature extraction. Most radar emitter signals are non-stationary, and many studies apply time-frequency spectrum features for non-stationary signal analysis in recent years. This letter proposes a novel spectrum calculation method for signal feature analysis using short-time Fourier transform (STFT) and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means algorithm. We first compute the time-frequency spectrograms of emitter signals by the proposed method. And we apply the convolutional neural network (CNN) for automatic identification based on the time-frequency images. In the experiment, we simulate different emitter signals for performance evaluation and compare our method with the spectrum analysis methods adopted in the literature. The results prove that our method can achieve excellent performance and has strong robustness in the condition of low signal-to-noise ratio (SNR), and our time-frequency analysis method works well in real-time.
Author Xiao, Zhiling
Yan, Zhenya
Author_xml – sequence: 1
  givenname: Zhiling
  orcidid: 0000-0002-2113-5647
  surname: Xiao
  fullname: Xiao, Zhiling
  email: zhilingxiao9928@163.com
  organization: Nanjing Research Institute of Electronic Technology, Nanjing, China
– sequence: 2
  givenname: Zhenya
  surname: Yan
  fullname: Yan, Zhenya
  organization: Nanjing Research Institute of Electronic Technology, Nanjing, China
BookMark eNp9kEtPwzAQhC1UJNrCH4CLJc4ptmOnyRGqFir1IUE5R469llySuDgOqP-e9CEOHLjszGG-1e4MUK92NSB0S8mIUpI9LCbr5XLECKOjmKSc8PgC9akQacS60es8SbNoPM7SKzRomi0hJGWC9pF-lVp6PK1sCODxXEMdrLFKButq_CQb0LgzK_cFJd7YCqKZh88WarXHbztQwbcVlrXGE1d_ubI9YLLEK2j9UcK38x_X6NLIsoGbsw7R-2y6mbxEi_XzfPK4iFSc0BAJxpUkRaETpik1WkJRKCOollSbOCnAqMIwEReEQyoMV4woyiClSaKlYEk8RPenvTvvuhubkG9d67t7mpyJhNCYJ5x3qfSUUt41jQeTKxuO_wYvbZlTkh86zY-d5odO83OnHcr-oDtvK-n3_0N3J8gCwC-QcU4yIeIfAgiGdg
CODEN ICLEF6
CitedBy_id crossref_primary_10_23919_JSEE_2023_000069
crossref_primary_10_1109_LSP_2024_3366113
crossref_primary_10_1109_TIFS_2024_3434605
crossref_primary_10_5515_KJKIEES_2024_35_3_232
crossref_primary_10_3390_rs14174192
crossref_primary_10_1109_LCOMM_2022_3225284
crossref_primary_10_1109_JIOT_2023_3257479
crossref_primary_10_1109_LCOMM_2024_3450612
crossref_primary_10_1109_ACCESS_2025_3579347
crossref_primary_10_1007_s11276_024_03698_1
crossref_primary_10_1007_s11071_025_11155_7
crossref_primary_10_1109_LSP_2024_3438089
crossref_primary_10_1049_rsn2_12504
crossref_primary_10_3390_rs15133289
crossref_primary_10_1109_TAES_2023_3307665
crossref_primary_10_1109_TIM_2023_3259023
crossref_primary_10_1016_j_sigpro_2025_110137
crossref_primary_10_3390_rs15164083
crossref_primary_10_3390_s24175618
crossref_primary_10_1080_23270012_2024_2362635
crossref_primary_10_1109_LCOMM_2022_3197979
crossref_primary_10_3390_electronics11071078
crossref_primary_10_1088_1742_6596_2522_1_012011
crossref_primary_10_1016_j_comcom_2023_01_014
crossref_primary_10_1049_sil2_12188
crossref_primary_10_1016_j_dsp_2025_105005
crossref_primary_10_1016_j_dsp_2023_104017
crossref_primary_10_1109_LCOMM_2024_3486280
crossref_primary_10_1109_LCOMM_2023_3312390
crossref_primary_10_1088_1742_6596_2858_1_012028
crossref_primary_10_1109_LCOMM_2021_3135378
crossref_primary_10_3390_s22031186
crossref_primary_10_3390_drones8090511
crossref_primary_10_1109_JSEN_2022_3223328
Cites_doi 10.1007/s00034-018-0757-0
10.1109/ITAIC.2019.8785692
10.14429/dsj.63.2404
10.1109/TAES.2017.2667142
10.1049/iet-rsn.2017.0265
10.1109/ACCESS.2018.2845102
10.3390/s16030289
10.1109/LCOMM.2018.2864725
10.1109/ICDSP.2018.8631845
10.1049/iet-rsn.2014.0512
10.1049/joe.2018.8765
10.1109/ACCESS.2017.2716191
10.3390/s16101682
10.1109/ACCESS.2017.2788942
10.1109/CVPR.2004.1315150
10.1109/LWC.2019.2900247
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2021.3084043
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 2638
ExternalDocumentID 10_1109_LCOMM_2021_3084043
9440955
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c361t-524ca0bbd62d11fdaebbcf51da1df36befcbf253b04e85f4c20c12e8166da5263
IEDL.DBID RIE
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683993100040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7798
IngestDate Mon Jun 30 10:18:51 EDT 2025
Sat Nov 29 03:56:07 EST 2025
Tue Nov 18 22:45:34 EST 2025
Wed Aug 27 02:39:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-524ca0bbd62d11fdaebbcf51da1df36befcbf253b04e85f4c20c12e8166da5263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2113-5647
PQID 2560134644
PQPubID 85419
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_LCOMM_2021_3084043
ieee_primary_9440955
proquest_journals_2560134644
crossref_primary_10_1109_LCOMM_2021_3084043
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev LCOMM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1007/s00034-018-0757-0
– ident: ref9
  doi: 10.1109/ITAIC.2019.8785692
– ident: ref13
  doi: 10.14429/dsj.63.2404
– ident: ref6
  doi: 10.1109/TAES.2017.2667142
– ident: ref7
  doi: 10.1049/iet-rsn.2017.0265
– ident: ref4
  doi: 10.1109/ACCESS.2018.2845102
– ident: ref2
  doi: 10.3390/s16030289
– ident: ref15
  doi: 10.1109/LCOMM.2018.2864725
– ident: ref8
  doi: 10.1109/ICDSP.2018.8631845
– ident: ref1
  doi: 10.1049/iet-rsn.2014.0512
– ident: ref14
  doi: 10.1049/joe.2018.8765
– ident: ref11
  doi: 10.1109/ACCESS.2017.2716191
– ident: ref10
  doi: 10.3390/s16101682
– ident: ref12
  doi: 10.1109/ACCESS.2017.2788942
– ident: ref16
  doi: 10.1109/CVPR.2004.1315150
– ident: ref5
  doi: 10.1109/LWC.2019.2900247
SSID ssj0008251
Score 2.5148015
Snippet Radar emitter identification (REI) is significant in both military and civilian application domains. A critical step for REI is signal feature extraction. Most...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2634
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -means algorithm
Algorithms
Artificial neural networks
convolutional neural network
Emitters
Feature extraction
Fourier transforms
Frequency shift keying
Frequency spectrum
Gray-scale
Military applications
Neural networks
Performance evaluation
Radar
Radar emitter identification
Signal analysis
Signal to noise ratio
Spectrogram
Spectrograms
Spectrum analysis
Time-frequency analysis
Title Radar Emitter Identification Based on Novel Time-Frequency Spectrum and Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/9440955
https://www.proquest.com/docview/2560134644
Volume 25
WOSCitedRecordID wos000683993100040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2558
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008251
  issn: 1089-7798
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGbdrdp0keOurh40FVEwVvJEwS3K_sC_72ZtLsoiuCpoSRtyZdmMsl83wCcFdzfZ6mIqDdOEbeZjoQxcUSVRLmbRPJchmQTeb9fvLyIhyW4WHBhrLUh-My2sRjO8s1QT3GrrCM4R8W0ZVjO87zmai1mXaRg1sH0wq8YRTEnyMSic9u9v7vzrmBC2ywuUE7mmxEKWVV-TMXBvvQ2__dlW7DRrCPJZQ38NizZagfWv6gL7oJ5lEaOyPXgFRk7pKbkumaPjlx582WIL_SHM_tGkAoS9UZ1YPUHwbT0k9F0QGRlSHdYzZoR6l-Jch7hEuLH9-C5d_3UvYmapAqRZhmdeMeTaxkrZbLEUOqMtEppl1IjqXEsU9Zp5ZKUqZjbInVcJ7GmicXjRSPTJGP7sFINK3sARGOq8rQwKtMUZdikc0wpKhxLTe7btoDOe7nUjeI4Jr54K4PnEYsyIFMiMmWDTAvOF23ea72NP2vvIhaLmg0MLTieg1k2v-S4DL4n4379d_h7qyNYw2fX0X3HsOJ72Z7Aqp5NXsej0zDaPgFaIdMo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBNq02Tds2jDofiNkUUfCu5gqCdzDnw35uTdkNRBJ8aSkJKvjQnJznfdwAOc-7fs1RE1BuniNtMR8KYOKJKotxNInlThmQTzV4vf3wUt1NwPOHCWGtD8Jk9wWK4yzd9_Y5HZaeCc1RMm4bZlPOEVmytybqLJMwqnF74PaPIxxSZWJx2WjfdrncGE3rC4hwFZb6ZoZBX5cdiHCxMe_l_37YCS_VOkpxV0K_ClC3XYPGLvuA6mDtp5IBcvDwhZ4dUpFxXn9KRc2_ADPGFXn9knwmSQaL2oAqt_iCYmH44eH8hsjSk1S9H9Rz1XaKgR3iECPINeGhf3LcuozqtQqRZRofe9eRaxkqZLDGUOiOtUtql1EhqHMuUdVq5JGUq5jZPHddJrGli8YLRyDTJ2CbMlP3SbgHRmKw8zY3KNEUhNukcU4oKx1LT9G0bQMejXOhacxxTXzwXwfeIRRGQKRCZokamAUeTNq-V4saftdcRi0nNGoYG7I7BLOqf8q0I3ifjfge4_XurA5i_vO92is5V73oHFrCfKtZvF2b8iNs9mNOj4dPbYD_MvE98cNZv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radar+Emitter+Identification+Based+on+Novel+Time-Frequency+Spectrum+and+Convolutional+Neural+Network&rft.jtitle=IEEE+communications+letters&rft.au=Xiao%2C+Zhiling&rft.au=Yan%2C+Zhenya&rft.date=2021-08-01&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=25&rft.issue=8&rft.spage=2634&rft.epage=2638&rft_id=info:doi/10.1109%2FLCOMM.2021.3084043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCOMM_2021_3084043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon