Radar Emitter Identification Based on Novel Time-Frequency Spectrum and Convolutional Neural Network
Radar emitter identification (REI) is significant in both military and civilian application domains. A critical step for REI is signal feature extraction. Most radar emitter signals are non-stationary, and many studies apply time-frequency spectrum features for non-stationary signal analysis in rece...
Saved in:
| Published in: | IEEE communications letters Vol. 25; no. 8; pp. 2634 - 2638 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1089-7798, 1558-2558 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Radar emitter identification (REI) is significant in both military and civilian application domains. A critical step for REI is signal feature extraction. Most radar emitter signals are non-stationary, and many studies apply time-frequency spectrum features for non-stationary signal analysis in recent years. This letter proposes a novel spectrum calculation method for signal feature analysis using short-time Fourier transform (STFT) and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means algorithm. We first compute the time-frequency spectrograms of emitter signals by the proposed method. And we apply the convolutional neural network (CNN) for automatic identification based on the time-frequency images. In the experiment, we simulate different emitter signals for performance evaluation and compare our method with the spectrum analysis methods adopted in the literature. The results prove that our method can achieve excellent performance and has strong robustness in the condition of low signal-to-noise ratio (SNR), and our time-frequency analysis method works well in real-time. |
|---|---|
| AbstractList | Radar emitter identification (REI) is significant in both military and civilian application domains. A critical step for REI is signal feature extraction. Most radar emitter signals are non-stationary, and many studies apply time-frequency spectrum features for non-stationary signal analysis in recent years. This letter proposes a novel spectrum calculation method for signal feature analysis using short-time Fourier transform (STFT) and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means algorithm. We first compute the time-frequency spectrograms of emitter signals by the proposed method. And we apply the convolutional neural network (CNN) for automatic identification based on the time-frequency images. In the experiment, we simulate different emitter signals for performance evaluation and compare our method with the spectrum analysis methods adopted in the literature. The results prove that our method can achieve excellent performance and has strong robustness in the condition of low signal-to-noise ratio (SNR), and our time-frequency analysis method works well in real-time. Radar emitter identification (REI) is significant in both military and civilian application domains. A critical step for REI is signal feature extraction. Most radar emitter signals are non-stationary, and many studies apply time-frequency spectrum features for non-stationary signal analysis in recent years. This letter proposes a novel spectrum calculation method for signal feature analysis using short-time Fourier transform (STFT) and [Formula Omitted]-means algorithm. We first compute the time-frequency spectrograms of emitter signals by the proposed method. And we apply the convolutional neural network (CNN) for automatic identification based on the time-frequency images. In the experiment, we simulate different emitter signals for performance evaluation and compare our method with the spectrum analysis methods adopted in the literature. The results prove that our method can achieve excellent performance and has strong robustness in the condition of low signal-to-noise ratio (SNR), and our time-frequency analysis method works well in real-time. |
| Author | Xiao, Zhiling Yan, Zhenya |
| Author_xml | – sequence: 1 givenname: Zhiling orcidid: 0000-0002-2113-5647 surname: Xiao fullname: Xiao, Zhiling email: zhilingxiao9928@163.com organization: Nanjing Research Institute of Electronic Technology, Nanjing, China – sequence: 2 givenname: Zhenya surname: Yan fullname: Yan, Zhenya organization: Nanjing Research Institute of Electronic Technology, Nanjing, China |
| BookMark | eNp9kEtPwzAQhC1UJNrCH4CLJc4ptmOnyRGqFir1IUE5R469llySuDgOqP-e9CEOHLjszGG-1e4MUK92NSB0S8mIUpI9LCbr5XLECKOjmKSc8PgC9akQacS60es8SbNoPM7SKzRomi0hJGWC9pF-lVp6PK1sCODxXEMdrLFKButq_CQb0LgzK_cFJd7YCqKZh88WarXHbztQwbcVlrXGE1d_ubI9YLLEK2j9UcK38x_X6NLIsoGbsw7R-2y6mbxEi_XzfPK4iFSc0BAJxpUkRaETpik1WkJRKCOollSbOCnAqMIwEReEQyoMV4woyiClSaKlYEk8RPenvTvvuhubkG9d67t7mpyJhNCYJ5x3qfSUUt41jQeTKxuO_wYvbZlTkh86zY-d5odO83OnHcr-oDtvK-n3_0N3J8gCwC-QcU4yIeIfAgiGdg |
| CODEN | ICLEF6 |
| CitedBy_id | crossref_primary_10_23919_JSEE_2023_000069 crossref_primary_10_1109_LSP_2024_3366113 crossref_primary_10_1109_TIFS_2024_3434605 crossref_primary_10_5515_KJKIEES_2024_35_3_232 crossref_primary_10_3390_rs14174192 crossref_primary_10_1109_LCOMM_2022_3225284 crossref_primary_10_1109_JIOT_2023_3257479 crossref_primary_10_1109_LCOMM_2024_3450612 crossref_primary_10_1109_ACCESS_2025_3579347 crossref_primary_10_1007_s11276_024_03698_1 crossref_primary_10_1007_s11071_025_11155_7 crossref_primary_10_1109_LSP_2024_3438089 crossref_primary_10_1049_rsn2_12504 crossref_primary_10_3390_rs15133289 crossref_primary_10_1109_TAES_2023_3307665 crossref_primary_10_1109_TIM_2023_3259023 crossref_primary_10_1016_j_sigpro_2025_110137 crossref_primary_10_3390_rs15164083 crossref_primary_10_3390_s24175618 crossref_primary_10_1080_23270012_2024_2362635 crossref_primary_10_1109_LCOMM_2022_3197979 crossref_primary_10_3390_electronics11071078 crossref_primary_10_1088_1742_6596_2522_1_012011 crossref_primary_10_1016_j_comcom_2023_01_014 crossref_primary_10_1049_sil2_12188 crossref_primary_10_1016_j_dsp_2025_105005 crossref_primary_10_1016_j_dsp_2023_104017 crossref_primary_10_1109_LCOMM_2024_3486280 crossref_primary_10_1109_LCOMM_2023_3312390 crossref_primary_10_1088_1742_6596_2858_1_012028 crossref_primary_10_1109_LCOMM_2021_3135378 crossref_primary_10_3390_s22031186 crossref_primary_10_3390_drones8090511 crossref_primary_10_1109_JSEN_2022_3223328 |
| Cites_doi | 10.1007/s00034-018-0757-0 10.1109/ITAIC.2019.8785692 10.14429/dsj.63.2404 10.1109/TAES.2017.2667142 10.1049/iet-rsn.2017.0265 10.1109/ACCESS.2018.2845102 10.3390/s16030289 10.1109/LCOMM.2018.2864725 10.1109/ICDSP.2018.8631845 10.1049/iet-rsn.2014.0512 10.1049/joe.2018.8765 10.1109/ACCESS.2017.2716191 10.3390/s16101682 10.1109/ACCESS.2017.2788942 10.1109/CVPR.2004.1315150 10.1109/LWC.2019.2900247 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/LCOMM.2021.3084043 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2558 |
| EndPage | 2638 |
| ExternalDocumentID | 10_1109_LCOMM_2021_3084043 9440955 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c361t-524ca0bbd62d11fdaebbcf51da1df36befcbf253b04e85f4c20c12e8166da5263 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683993100040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-7798 |
| IngestDate | Mon Jun 30 10:18:51 EDT 2025 Sat Nov 29 03:56:07 EST 2025 Tue Nov 18 22:45:34 EST 2025 Wed Aug 27 02:39:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-524ca0bbd62d11fdaebbcf51da1df36befcbf253b04e85f4c20c12e8166da5263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2113-5647 |
| PQID | 2560134644 |
| PQPubID | 85419 |
| PageCount | 5 |
| ParticipantIDs | crossref_citationtrail_10_1109_LCOMM_2021_3084043 ieee_primary_9440955 proquest_journals_2560134644 crossref_primary_10_1109_LCOMM_2021_3084043 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE communications letters |
| PublicationTitleAbbrev | LCOMM |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref16 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref3 doi: 10.1007/s00034-018-0757-0 – ident: ref9 doi: 10.1109/ITAIC.2019.8785692 – ident: ref13 doi: 10.14429/dsj.63.2404 – ident: ref6 doi: 10.1109/TAES.2017.2667142 – ident: ref7 doi: 10.1049/iet-rsn.2017.0265 – ident: ref4 doi: 10.1109/ACCESS.2018.2845102 – ident: ref2 doi: 10.3390/s16030289 – ident: ref15 doi: 10.1109/LCOMM.2018.2864725 – ident: ref8 doi: 10.1109/ICDSP.2018.8631845 – ident: ref1 doi: 10.1049/iet-rsn.2014.0512 – ident: ref14 doi: 10.1049/joe.2018.8765 – ident: ref11 doi: 10.1109/ACCESS.2017.2716191 – ident: ref10 doi: 10.3390/s16101682 – ident: ref12 doi: 10.1109/ACCESS.2017.2788942 – ident: ref16 doi: 10.1109/CVPR.2004.1315150 – ident: ref5 doi: 10.1109/LWC.2019.2900247 |
| SSID | ssj0008251 |
| Score | 2.5148723 |
| Snippet | Radar emitter identification (REI) is significant in both military and civilian application domains. A critical step for REI is signal feature extraction. Most... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2634 |
| SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -means algorithm Algorithms Artificial neural networks convolutional neural network Emitters Feature extraction Fourier transforms Frequency shift keying Frequency spectrum Gray-scale Military applications Neural networks Performance evaluation Radar Radar emitter identification Signal analysis Signal to noise ratio Spectrogram Spectrograms Spectrum analysis Time-frequency analysis |
| Title | Radar Emitter Identification Based on Novel Time-Frequency Spectrum and Convolutional Neural Network |
| URI | https://ieeexplore.ieee.org/document/9440955 https://www.proquest.com/docview/2560134644 |
| Volume | 25 |
| WOSCitedRecordID | wos000683993100040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2558 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008251 issn: 1089-7798 databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrZKDN912s8k-ctTS4sFWEYXelrwWCu2u9AX-e5PstiiK4GlzyOwu-ZLMTDLfDMC1ZNSXoVlpXCfEo5oEnmAUe4xTYSCXlMXSFZuIR6NkPGbPNbjdcmG01i74THds093lq0Ku7FFZl1FqM6bVoR7HccnV2u66loJZBtMzYzGyZEOQ8Vn3sfc0HBpXMMAd4ic2ncw3JeSqqvzYip1-GRz8788OYb-yI9FdCfwR1HR-DHtfsgs2Qb1wxeeoP5tYxg4qKblZdUaH7o36Usg0RsVaT5GlgniDeRlY_YFsWfrlfDVDPFeoV-TraoaaT9p0Hu7h4sdP4G3Qf-09eFVRBU-SCC-N40kl94VQUaAwzhTXQsgsxIpjlZFI6EyKLAiJ8KlOwozKwJc40PZ6UfEwiMgpNPIi12eAhNF-WhGzn0aaCqP1uDWmjFY04mYxyxbgzSinsso4bgtfTFPnefgsdcikFpm0QqYFN1uZ9zLfxp-9mxaLbc8Khha0N2Cm1ZJcpM73JNTYf-e_S13Arn13Gd3XhoYZZX0JO3K9nCzmV262fQL3OtH2 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AvXBrynOzzz4pt2aJq3No46NiVsVmbC3kq-CoK3MOfC_N0m7oiiCT81DjpT8ktxdcr87gDPJqC9Ds9O4jolHNQk8wSj2GKfCQC4pu5Su2MRlksTjMbtfgIuaC6O1dsFnumWb7i1fFfLdXpW1GaU2Y9oiLIeUBrhka9XnriVhluH0zNiMLJ5TZHzWHnTuhkPjDAa4RfzYJpT5poZcXZUfh7HTML3N__3bFmxUliS6KqHfhgWd78D6l_yCDVAPXPEJ6r48Wc4OKkm5WXVLh66NAlPINJJipp-RJYN4vUkZWv2BbGH66eT9BfFcoU6Rz6o1aoa0CT3cx0WQ78Jjrzvq9L2qrIInSYSnxvWkkvtCqChQGGeKayFkFmLFscpIJHQmRRaERPhUx2FGZeBLHGj7wKh4GERkD5byItf7gITRf1oRc6JGmgqj97g1p4xeNOJmO8sm4Pksp7LKOW5LXzynzvfwWeqQSS0yaYVME85rmdcy48afvRsWi7pnBUMTjuZgptWmfEud90mosQAPfpc6hdX-aDhIBzfJ7SGs2XHKWL8jWDIzro9hRc6mT2-TE7fyPgEK3tU9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radar+Emitter+Identification+Based+on+Novel+Time-Frequency+Spectrum+and+Convolutional+Neural+Network&rft.jtitle=IEEE+communications+letters&rft.au=Xiao%2C+Zhiling&rft.au=Yan%2C+Zhenya&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=25&rft.issue=8&rft.spage=2634&rft_id=info:doi/10.1109%2FLCOMM.2021.3084043&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon |