A Finite Mixture GARCH Approach with EM Algorithm for Energy Forecasting Applications
Enhancing forecasting performance in terms of both the expected mean value and variance has been a critical challenging issue for energy industry. In this paper, the novel methodology of finite mixture Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) approach with Expectation–Maximi...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 14; H. 9; S. 2352 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.05.2021
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!