Action-Inclusive Multi-Future Prediction Using a Generative Model in Human-Related Scenes for Mobile Robots
Mobility in daily unstructured environments, particularly in human-centered scenarios, remains a fundamental challenge for mobile robots. While traditional prediction-based approaches primarily estimate partial features for robot decision making, such as position and velocity, recent world models en...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 13; S. 167034 - 167044 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Mobility in daily unstructured environments, particularly in human-centered scenarios, remains a fundamental challenge for mobile robots. While traditional prediction-based approaches primarily estimate partial features for robot decision making, such as position and velocity, recent world models enable direct prediction of future sensory data. However, their potentials in human-inclusive environments remain underexplored. To assess the feasibility of world models in facilitating human-robot interactions, we propose a robot framework using a deep generative model that jointly predicts multiple future observations and actions. Our approach leverages first-person-view (FPV) raw sensor data, integrating both observations and actions to enhance predictive capabilities in dynamic human-populated settings. Experimental results demonstrate that our method is capable of generating a range of candidate futures for one condition and planning actions based on observation guidance. These findings highlight the potential of our approach for facilitating autonomous robots' coexistence with human. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2025.3611812 |