EISPY2D: An Open-Source Python Library for the Development and Comparison of Algorithms in Two-Dimensional Electromagnetic Inverse Scattering Problems

Microwave Imaging is a key technique for reconstructing the electrical properties of inaccessible media, relying on algorithms to solve the associated Electromagnetic Inverse Scattering Problem. To support the assessment of recent developments in this field, this work introduces an open-source Pytho...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 13; s. 92134 - 92154
Hlavní autori: Costa Batista, Andre, Adriano, Ricardo, Batista, Lucas S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Microwave Imaging is a key technique for reconstructing the electrical properties of inaccessible media, relying on algorithms to solve the associated Electromagnetic Inverse Scattering Problem. To support the assessment of recent developments in this field, this work introduces an open-source Python library that provides a modular and standardized framework for implementing and evaluating microwave imaging algorithms. The library facilitates the development and comparison of new methods through a structured class system, offering features such as test randomization, performance metrics, and statistical analysis. To the authors' knowledge, this is the first tool designed specifically for benchmarking and comparative studies in microwave imaging algorithms. The paper presents the library's design principles, along with case studies demonstrating its functionality. The code is freely available on GitHub: https://andre-batista.github.io/eispy2d/ .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2025.3573679