EISPY2D: An Open-Source Python Library for the Development and Comparison of Algorithms in Two-Dimensional Electromagnetic Inverse Scattering Problems

Microwave Imaging is a key technique for reconstructing the electrical properties of inaccessible media, relying on algorithms to solve the associated Electromagnetic Inverse Scattering Problem. To support the assessment of recent developments in this field, this work introduces an open-source Pytho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 13; S. 92134 - 92154
Hauptverfasser: Costa Batista, Andre, Adriano, Ricardo, Batista, Lucas S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microwave Imaging is a key technique for reconstructing the electrical properties of inaccessible media, relying on algorithms to solve the associated Electromagnetic Inverse Scattering Problem. To support the assessment of recent developments in this field, this work introduces an open-source Python library that provides a modular and standardized framework for implementing and evaluating microwave imaging algorithms. The library facilitates the development and comparison of new methods through a structured class system, offering features such as test randomization, performance metrics, and statistical analysis. To the authors' knowledge, this is the first tool designed specifically for benchmarking and comparative studies in microwave imaging algorithms. The paper presents the library's design principles, along with case studies demonstrating its functionality. The code is freely available on GitHub: https://andre-batista.github.io/eispy2d/ .
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2025.3573679