Multi-Objective Combinatorial Optimization Algorithm Based on Asynchronous Advantage Actor–Critic and Graph Transformer Networks

Multi-objective combinatorial optimization problems (MOCOPs) are designed to identify solution sets that optimally balance multiple competing objectives. Addressing the challenges inherent in applying deep reinforcement learning (DRL) to solve MOCOPs, such as model non-convergence, lengthy training...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 13; H. 19; S. 3842
Hauptverfasser: Jia, Dongbao, Cao, Ming, Hu, Wenbin, Sun, Jing, Li, Hui, Wang, Yichen, Zhou, Weijie, Yin, Tiancheng, Qian, Ran
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.10.2024
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!