Floating-Point Inverse Square Root Algorithm Based on Taylor-Series Expansion

This brief describes a segmented structure to deal with inverse square root in floating-point digital calculation arithmetic, based on Taylor-Series expansion; it uses only the small number of their expansion terms to achieve a fast evaluation of these functions in high precision. Taylor-series expa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. II, Express briefs Ročník 68; číslo 7; s. 2640 - 2644
Hlavní autoři: Wei, Jianglin, Kuwana, Anna, Kobayashi, Haruo, Kubo, Kazuyoshi, Tanaka, Yuuki
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-7747, 1558-3791
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This brief describes a segmented structure to deal with inverse square root in floating-point digital calculation arithmetic, based on Taylor-Series expansion; it uses only the small number of their expansion terms to achieve a fast evaluation of these functions in high precision. Taylor-series expansions of the inverse square root are examined for several center points with their convergence ranges, and the inverse square root calculation algorithm trade-offs among accuracy, numbers of multiplications/additions/subtractions and LUT sizes are shown; the designer can choose the optimal algorithm for his digital inverse square root calculation, and build its conceptual dedicated hardware architecture design with the contents described here.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2021.3062358