Floating-Point Inverse Square Root Algorithm Based on Taylor-Series Expansion
This brief describes a segmented structure to deal with inverse square root in floating-point digital calculation arithmetic, based on Taylor-Series expansion; it uses only the small number of their expansion terms to achieve a fast evaluation of these functions in high precision. Taylor-series expa...
Uloženo v:
| Vydáno v: | IEEE transactions on circuits and systems. II, Express briefs Ročník 68; číslo 7; s. 2640 - 2644 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1549-7747, 1558-3791 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This brief describes a segmented structure to deal with inverse square root in floating-point digital calculation arithmetic, based on Taylor-Series expansion; it uses only the small number of their expansion terms to achieve a fast evaluation of these functions in high precision. Taylor-series expansions of the inverse square root are examined for several center points with their convergence ranges, and the inverse square root calculation algorithm trade-offs among accuracy, numbers of multiplications/additions/subtractions and LUT sizes are shown; the designer can choose the optimal algorithm for his digital inverse square root calculation, and build its conceptual dedicated hardware architecture design with the contents described here. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1549-7747 1558-3791 |
| DOI: | 10.1109/TCSII.2021.3062358 |