Importance Sampling and Feature Fusion Paradigm-Boosted Multi-Modal Convolutional Neural Networks: Deployment in Composite Curing Process Monitored by Electro-Mechanical Impedance

The increasing application of composite materials in various industrial sectors is driven by their lightweight nature, high strength-to-stiffness ratio, and corrosion resistance. Effective monitoring of the curing process is crucial for ensuring quality and performance. Electro-Mechanical Impedance...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 13; p. 1
Main Authors: Gao, Zeyuan, Zhao, Xin, Li, Meng, Han, Zhibin, Zhu, Jianjian
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The increasing application of composite materials in various industrial sectors is driven by their lightweight nature, high strength-to-stiffness ratio, and corrosion resistance. Effective monitoring of the curing process is crucial for ensuring quality and performance. Electro-Mechanical Impedance (EMI) offers promising, non-destructive, real-time monitoring, but the complexity of EMI signals poses challenges. Convolutional Neural Networks (CNNs) have the potential to enhance EMI-based monitoring accuracy. However, training CNNs on multi-modal EMI signals requires addressing data heterogeneity, class imbalance, and computational complexity at present. This study develops the Importance Sampling Algorithm-optimized Multi-Modal CNNs (ISA-MM-CNNs) paradigm for EMI-based evaluation of composite curing processes. By prioritizing informative samples and capturing complementary information from diverse EMI signal modalities, we aim to improve the robustness and efficiency of CNNs in evaluating curing degrees. This study outlines EMI monitoring challenges, details the ISA-MM-CNNs paradigm, and discusses data preprocessing, network architecture, and training optimization. Experimental results demonstrate the superiority of the developed ISA-MM-CNNs and suggest further studies for the curing monitoring of composites.
AbstractList The increasing application of composite materials in various industrial sectors is driven by their lightweight nature, high strength-to-stiffness ratio, and corrosion resistance. Effective monitoring of the curing process is crucial for ensuring quality and performance. Electro-Mechanical Impedance (EMI) offers promising, non-destructive, real-time monitoring, but the complexity of EMI signals poses challenges. Convolutional Neural Networks (CNNs) have the potential to enhance EMI-based monitoring accuracy. However, training CNNs on multi-modal EMI signals requires addressing data heterogeneity, class imbalance, and computational complexity at present. This study develops the Importance Sampling Algorithm-optimized Multi-Modal CNNs (ISA-MM-CNNs) paradigm for EMI-based evaluation of composite curing processes. By prioritizing informative samples and capturing complementary information from diverse EMI signal modalities, we aim to improve the robustness and efficiency of CNNs in evaluating curing degrees. This study outlines EMI monitoring challenges, details the ISA-MM-CNNs paradigm, and discusses data preprocessing, network architecture, and training optimization. Experimental results demonstrate the superiority of the developed ISA-MM-CNNs and suggest further studies for the curing monitoring of composites.
Author Gao, Zeyuan
Han, Zhibin
Zhu, Jianjian
Zhao, Xin
Li, Meng
Author_xml – sequence: 1
  givenname: Zeyuan
  surname: Gao
  fullname: Gao, Zeyuan
  organization: College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan, P.R. China
– sequence: 2
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan, P.R. China
– sequence: 3
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan, P.R. China
– sequence: 4
  givenname: Zhibin
  surname: Han
  fullname: Han, Zhibin
  organization: Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, The Netherlands
– sequence: 5
  givenname: Jianjian
  orcidid: 0009-0009-5382-1041
  surname: Zhu
  fullname: Zhu, Jianjian
  email: zhujj.work@cafuc.edu.cn
  organization: College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan, P.R. China
BookMark eNpNUctuEzEUHaEiUUq_ABaWWE_q12Rm2JUhKZEaqBRYW35cB4eJHWwPKN_FD-I0Fao31746L_m8ri588FBVbwmeEYL7m9thWGw2M4ppM2NNQxrcvaguKZn3NWvY_OLZ_VV1ndIOl9OVVdNeVn9X-0OIWXoNaCP3h9H5LZLeoCXIPEVAyym54NGDjNK47b7-GELKYNB6GrOr18HIEQ3B_w7jlAuwvL7AFB9H_hPiz_QBfYLDGI578Bk5X8DFMbkMaJjiye0hBg0poXXwLodYtNURLUbQOYZ6DfqH9E4XwZIUzCnom-qllWOC66d5VX1fLr4Nn-v7r3er4fa-1mxOck0p0xxTrBsuKTWmUS1rrKWGYGqxZdwqbSzrW8VBddgSojrWFYZtqZFasatqddY1Qe7EIbq9jEcRpBOPixC3Qsbs9AiC8x76nnNFW8LnxqqeYUWUlk0nuaZt0Xp_1jrE8GuClMUuTLF8VxKMdIS3rOtPKHZG6RhSimD_uxIsTmWLc9niVLZ4Kruw3p1ZDgCeMUqGlnH2D8hZqvI
CODEN IAECCG
Cites_doi 10.58286/28083
10.1016/j.jcp.2015.03.047
10.3390/s22249920
10.1016/j.jmapro.2023.03.015
10.1016/j.ymssp.2022.109634
10.1177/1475921705049752
10.1177/14759217221109944
10.1117/12.2559262
10.1109/JSEN.2023.3343779
10.1016/j.ast.2013.03.008
10.1177/1045389X14560368
10.1016/j.strusafe.2022.102216
10.1016/j.ymssp.2020.107467
10.1016/j.compositesa.2022.107321
10.26678/abcm.cobem2023.cob2023-1091
10.1007/s10443-021-09904-z
10.1002/wics.56
10.1016/j.istruc.2023.03.017
10.1007/s00339-024-07314-z
10.1177/1475921711414234
10.1016/j.insmatheco.2015.06.001
10.1145/3558819.3565132
10.3390/s18051307
10.1007/s40430-024-04916-9
10.1016/j.compstruct.2021.114789
10.1109/TPAMI.2023.3275156
10.1088/2631-8695/abb568
10.1088/1361-665X/ace868
10.1007/s11029-021-09941-6
10.1198/tech.2006.s440
10.1109/JSEN.2021.3132943
10.1177/1475921721993419
10.1016/j.matpr.2023.06.451
10.3390/jcs7020053
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3551508
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_449e9944b27146dfb930b1bca58a4c27
10_1109_ACCESS_2025_3551508
10930734
Genre orig-research
GrantInformation_xml – fundername: Civil Aviation Flight University of China for the Introduction of High-level Talents
  grantid: CZKY2024209
– fundername: Young Scientist Fund of the National Natural Science Foundation of China
  grantid: 52205171
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-223c4020c54a22dd5b735ff2d102f0f34fbcdf397b4eb80f11b838402f72dacb3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001453644600038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:28:42 EDT 2025
Mon Jun 30 12:03:38 EDT 2025
Sat Nov 29 08:05:44 EST 2025
Wed Aug 27 02:03:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-223c4020c54a22dd5b735ff2d102f0f34fbcdf397b4eb80f11b838402f72dacb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-5382-1041
OpenAccessLink https://doaj.org/article/449e9944b27146dfb930b1bca58a4c27
PQID 3181473897
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_3181473897
doaj_primary_oai_doaj_org_article_449e9944b27146dfb930b1bca58a4c27
crossref_primary_10_1109_ACCESS_2025_3551508
ieee_primary_10930734
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
Zhang (ref34) 2023
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref19
  doi: 10.58286/28083
– ident: ref29
  doi: 10.1016/j.jcp.2015.03.047
– ident: ref24
  doi: 10.3390/s22249920
– ident: ref2
  doi: 10.1016/j.jmapro.2023.03.015
– ident: ref12
  doi: 10.1016/j.ymssp.2022.109634
– ident: ref27
  doi: 10.1177/1475921705049752
– ident: ref11
  doi: 10.1177/14759217221109944
– ident: ref21
  doi: 10.1117/12.2559262
– ident: ref9
  doi: 10.1109/JSEN.2023.3343779
– ident: ref30
  doi: 10.1016/j.ast.2013.03.008
– ident: ref22
  doi: 10.1177/1045389X14560368
– ident: ref32
  doi: 10.1016/j.strusafe.2022.102216
– ident: ref17
  doi: 10.1016/j.ymssp.2020.107467
– ident: ref1
  doi: 10.1016/j.compositesa.2022.107321
– ident: ref7
  doi: 10.26678/abcm.cobem2023.cob2023-1091
– ident: ref16
  doi: 10.1007/s10443-021-09904-z
– ident: ref31
  doi: 10.1002/wics.56
– ident: ref3
  doi: 10.1016/j.istruc.2023.03.017
– ident: ref8
  doi: 10.1007/s00339-024-07314-z
– ident: ref6
  doi: 10.1177/1475921711414234
– year: 2023
  ident: ref34
  article-title: Meta-transformer: A unified framework for multimodal learning
  publication-title: arXiv:2307.10802
– ident: ref28
  doi: 10.1016/j.insmatheco.2015.06.001
– ident: ref13
  doi: 10.1145/3558819.3565132
– ident: ref14
  doi: 10.3390/s18051307
– ident: ref4
  doi: 10.1007/s40430-024-04916-9
– ident: ref26
  doi: 10.1016/j.compstruct.2021.114789
– ident: ref35
  doi: 10.1109/TPAMI.2023.3275156
– ident: ref20
  doi: 10.1088/2631-8695/abb568
– ident: ref15
  doi: 10.1088/1361-665X/ace868
– ident: ref18
  doi: 10.1007/s11029-021-09941-6
– ident: ref33
  doi: 10.1198/tech.2006.s440
– ident: ref23
  doi: 10.1109/JSEN.2021.3132943
– ident: ref5
  doi: 10.1177/1475921721993419
– ident: ref10
  doi: 10.1016/j.matpr.2023.06.451
– ident: ref25
  doi: 10.3390/jcs7020053
SSID ssj0000816957
Score 2.334415
Snippet The increasing application of composite materials in various industrial sectors is driven by their lightweight nature, high strength-to-stiffness ratio, and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Complexity
Composite curing
Composite materials
Convolutional neural networks
Corrosion resistance
Curing
Data models
electro-mechanical impedance
Electromagnetic interference
Feature extraction
Heterogeneity
Impedance
Importance sampling
Importance sampling algorithm
Mechanical impedance
Monitoring
Monte Carlo methods
multi-modal learning
Neural networks
Proposals
Real time
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPItYKMgHjqTd-LGOubWhKzi0qgRIvVl-VntoUmV3K_G7-IPM2G5VhDhwyUt5TPRNPDPOzDeEfBDIMNRpzPODhbCibXTwbaMs027BF13LS7MJdXbWXVzo81qsnmthYow5-Swe4Gb-lx9Gv8WpskOkPgKVFDtkR6lFKda6m1DBDhJaqsosBKceHvU9vATEgEwegFlF5vM_rE8m6a9dVf4airN9WT79T8mekSfVkaRHBfnn5EEcXpDH9-gFX5JfX6-ydw240m8WU8eHS2qHQNHv206RLrc4V0bP7WTD6vKqOR5zyQfNVbnN6RjgAf043FT1hD3k8sirnDy-_kQ_R-wYjNLR1UBxdMEssEj7XP5Iax0CLUPHBPd2P-lJab3TnEYsO0YtoSBpDCjoHvmxPPnef2lqk4bG80W7acC98BiDeiksYyFIp7hMiQXwXNI8cZGcDwm8Hiei6-apbV3HIapkSbFgveOvyO4wDvE1oeA9KiGkioJZMJPSCsVtlHweNETS0s_Ix1vwzHXh4jA5hplrU7A2iLWpWM_IMQJ8dyoSaecDgJyp36URQkethXBMgc0IyQGOrnXeys4Kz9SM7CHa955XgJ6R_Vt9MfWrXxsYH1uQudPqzT8ue0seoYhlDmef7G6mbXxHHvqbzWo9vc8K_Ru9PPXY
  priority: 102
  providerName: IEEE
Title Importance Sampling and Feature Fusion Paradigm-Boosted Multi-Modal Convolutional Neural Networks: Deployment in Composite Curing Process Monitored by Electro-Mechanical Impedance
URI https://ieeexplore.ieee.org/document/10930734
https://www.proquest.com/docview/3181473897
https://doaj.org/article/449e9944b27146dfb930b1bca58a4c27
Volume 13
WOSCitedRecordID wos001453644600038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOqEARC23lA0dC49c67q0Nu4LDVpUAqbfIr1R7aBZldytx6Z_iDzJju9VWHLhwcZQoiseZ8TysmW8I-SARYagxmOcHg7SSVSZ4VmnLjZuKacNEbjahLy6aqytzudPqC3PCMjxw_nEnUppojJSOa9jUoXdG1I45b1VjpeepjrzWZieYSjq4YVOjdIEZYrU5OWtbWBEEhFx9AhuLMOiPTFFC7C8tVv7Sy8nYzPfJi-Il0rNM3UvyJA6vyPMd7MDX5PfXm-Q6A9PoN4t54cM1tUOg6NRtx0jnWzwIo5d2tGF5fVOdr1I9B00lt9ViFWCCdjXcFtmDOwTqSJeUGb4-pZ8jtgPG80O6HCiqDkzxirRNtY20FBnQrBdG-Lb7RWe5r061iFhTjCJAgdIYkNAD8mM--95-qUoHhsqLKdtU4Dt4DDC9kpbzEJTTQvU9D-CW9HUvZO986MGlcTK6pu4Zc42AkJH3mgfrnXhD9obVEN8SCq6hllLpKLkFG6is1MJGJepgIExWfkI-3jOj-5mBNroUoNSmy7zrkHdd4d2EnCPDHl5FlOz0AGSnK7LT_Ut2JuQA2b0zn0GVJyfk8J7_XdnS6w6UHwOaG6Pf_Y-535NnuJ58mnNI9jbjNh6Rp_52s1yPx0maYVzczY5TTeIfyZv6MA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIAEHnq1YKOADR9Imjr2OubWhq1Z0V5UoUm-Wn9UemqDsbiV-F3-QGcetihAHLnkpj4m-iWfGmfmGkI8cGYYahXl-sOCGV4XyriqkYcpO62lT1WOzCblYNBcX6iwXq6damBBCSj4Le7iZ_uX73m1wqmwfqY9AJfl98kBwzsqxXOt2SgV7SCghM7cQnLx_0LbwGhAFMrEHhhW5z_-wP4mmP_dV-WswThZm9uw_ZXtOnmZXkh6M2L8g90L3kjy5QzD4ivw6uUr-NSBLvxlMHu8uqek8Rc9vMwQ62-BsGT0zg_HLy6visE9FHzTV5Rbz3sMD2r67zgoKe8jmkVYpfXz1mX4J2DMYpaPLjuL4gnlggbapAJLmSgQ6Dh4D3Nv-pEdj851iHrDwGPWEgqTBo6Db5Pvs6Lw9LnKbhsLV02pdgIPhMAp1ghvGvBdW1iJG5sF3iWWsebTOR_B7LA-2KWNV2aaGuJJFybxxtt4hW13fhdeEgv8oORcycGbAUArDZW2CqEuvIJYWbkI-3YCnf4xsHDpFMaXSI9YasdYZ6wk5RIBvT0Uq7XQAkNP5y9Scq6AU55ZJsBo-WsDRVtYZ0RjumJyQbUT7zvNGoCdk90ZfdP7uVxpGyApkbpR884_LPpBHx-fzU316svj6ljxGcccZnV2ytR424R156K7Xy9XwPin3b6I0-R8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+Sampling+and+Feature+Fusion+Paradigm-Boosted+Multi-Modal+Convolutional+Neural+Networks%3A+Deployment+in+Composite+Curing+Process+Monitored+by+Electro-Mechanical+Impedance&rft.jtitle=IEEE+access&rft.au=Xin+Zhao&rft.au=Zeyuan+Gao&rft.au=Meng+Li&rft.au=Zhibin+Han&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=49630&rft.epage=49642&rft_id=info:doi/10.1109%2FACCESS.2025.3551508&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_449e9944b27146dfb930b1bca58a4c27
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon