A Comparison of Benson’s Outer Approximation Algorithm with an Extended Version of Multiobjective Simplex Algorithm

The multiple objective simplex algorithm and its variants work in the decision variable space to find the set of all efficient extreme points of multiple objective linear programming (MOLP). Other approaches to the problem find either the entire set of all efficient solutions or a subset of them and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in Operations Research Ročník 2021; s. 1 - 11
Hlavní autoři: Nyiam, Paschal B., Salhi, Abdellah
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Hindawi 05.07.2021
John Wiley & Sons, Inc
Témata:
ISSN:1687-9147, 1687-9155
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The multiple objective simplex algorithm and its variants work in the decision variable space to find the set of all efficient extreme points of multiple objective linear programming (MOLP). Other approaches to the problem find either the entire set of all efficient solutions or a subset of them and also return the corresponding objective values (nondominated points). This paper presents an extension of the multiobjective simplex algorithm (MSA) to generate the set of all nondominated points and no redundant ones. This extended version is compared to Benson’s outer approximation (BOA) algorithm that also computes the set of all nondominated points of the problem. Numerical results on nontrivial MOLP problems show that the total number of nondominated points returned by the extended MSA is the same as that returned by BOA for most of the problems considered.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-9147
1687-9155
DOI:10.1155/2021/1857030