Scalable data parallel algorithms for texture synthesis using Gibbs random fields

This article introduces scalable data parallel algorithms for image processing. Focusing on Gibbs and Markov random field model representation for textures, we present parallel algorithms for texture synthesis, compression, and maximum likelihood parameter estimation, currently implemented on Thinki...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 4; číslo 10; s. 1456 - 1460
Hlavní autoři: Bader, D.A., JaJa, J., Chellappa, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.10.1995
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1057-7149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article introduces scalable data parallel algorithms for image processing. Focusing on Gibbs and Markov random field model representation for textures, we present parallel algorithms for texture synthesis, compression, and maximum likelihood parameter estimation, currently implemented on Thinking Machines CM-2 and CM-5. The use of fine-grained, data parallel processing techniques yields real-time algorithms for texture synthesis and compression that are substantially faster than the previously known sequential implementations. Although current implementations are on Connection Machines, the methodology presented enables machine-independent scalable algorithms for a number of problems in image processing and analysis.< >
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1057-7149
DOI:10.1109/83.465111