Recent progress in the utilization of pea protein as an emulsifier for food applications

There is an increasing movement within the food industry to find consumer friendly plant protein ingredients to replace those from animal sources. Pea (Pisum sativum L.) protein has been extensively studied because it provides good nutritional properties, functionality, is readily available, and has...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Trends in food science & technology Ročník 86; s. 25 - 33
Hlavní autoři: Burger, Travis G., Zhang, Yue
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge Elsevier Ltd 01.04.2019
Elsevier BV
Témata:
ISSN:0924-2244, 1879-3053
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract There is an increasing movement within the food industry to find consumer friendly plant protein ingredients to replace those from animal sources. Pea (Pisum sativum L.) protein has been extensively studied because it provides good nutritional properties, functionality, is readily available, and has low allergenicity. The focus of this review is a summary of the current progress in understanding and characterizing the use of pea protein as an emulsifier. The emulsification properties of pea protein are described in comparison to other protein emulsifiers. The impact of origin, processing, and environmental conditions like temperature, pH, and ionic strength is discussed. The physicochemical properties of the protein, such as solubility, surface charge, hydrophobicity, and composition are also covered, along with current methods to improve functionality. One of the most valuable functional properties of pea protein is emulsification, which can be affected by its origin, isolation method, and the environmental or processing conditions (pH, ionic strength, and temperature). The physicochemical properties including solubility, surface charge/hydrophobicity, and interfacial properties have been examined to evaluate their emulsifying functionality. While several methods such as complexation, glycosylation, and enzymatic hydrolysis have been developed to further improve the pea protein, there remains a gap between the functionality of laboratory and commercially prepared products. There is an opportunity to increase the functionality of pea protein by understanding and closing this gap. •The emulsification properties of pea protein were described in comparison to other protein emulsifiers.•The emulsification and stabilization mechanisms of pea protein were discussed.•Factors affecting the emulsifying properties of pea protein were described.•Emulsifying properties of pea protein were improved by complexation, glycosylation, and enzymatic hydrolysis.•There remains a gap between the functionality of laboratory and commercially prepared pea protein.
AbstractList Background There is an increasing movement within the food industry to find consumer friendly plant protein ingredients to replace those from animal sources. Pea (Pisum sativum L.) protein has been extensively studied because it provides good nutritional properties, functionality, is readily available, and has low allergenicity. Scope and approach The focus of this review is a summary of the current progress in understanding and characterizing the use of pea protein as an emulsifier. The emulsification properties of pea protein are described in comparison to other protein emulsifiers. The impact of origin, processing, and environmental conditions like temperature, pH, and ionic strength is discussed. The physicochemical properties of the protein, such as solubility, surface charge, hydrophobicity, and composition are also covered, along with current methods to improve functionality. Key findings and conclusions One of the most valuable functional properties of pea protein is emulsification, which can be affected by its origin, isolation method, and the environmental or processing conditions (pH, ionic strength, and temperature). The physicochemical properties including solubility, surface charge/hydrophobicity, and interfacial properties have been examined to evaluate their emulsifying functionality. While several methods such as complexation, glycosylation, and enzymatic hydrolysis have been developed to further improve the pea protein, there remains a gap between the functionality of laboratory and commercially prepared products. There is an opportunity to increase the functionality of pea protein by understanding and closing this gap.
There is an increasing movement within the food industry to find consumer friendly plant protein ingredients to replace those from animal sources. Pea (Pisum sativum L.) protein has been extensively studied because it provides good nutritional properties, functionality, is readily available, and has low allergenicity. The focus of this review is a summary of the current progress in understanding and characterizing the use of pea protein as an emulsifier. The emulsification properties of pea protein are described in comparison to other protein emulsifiers. The impact of origin, processing, and environmental conditions like temperature, pH, and ionic strength is discussed. The physicochemical properties of the protein, such as solubility, surface charge, hydrophobicity, and composition are also covered, along with current methods to improve functionality. One of the most valuable functional properties of pea protein is emulsification, which can be affected by its origin, isolation method, and the environmental or processing conditions (pH, ionic strength, and temperature). The physicochemical properties including solubility, surface charge/hydrophobicity, and interfacial properties have been examined to evaluate their emulsifying functionality. While several methods such as complexation, glycosylation, and enzymatic hydrolysis have been developed to further improve the pea protein, there remains a gap between the functionality of laboratory and commercially prepared products. There is an opportunity to increase the functionality of pea protein by understanding and closing this gap. •The emulsification properties of pea protein were described in comparison to other protein emulsifiers.•The emulsification and stabilization mechanisms of pea protein were discussed.•Factors affecting the emulsifying properties of pea protein were described.•Emulsifying properties of pea protein were improved by complexation, glycosylation, and enzymatic hydrolysis.•There remains a gap between the functionality of laboratory and commercially prepared pea protein.
There is an increasing movement within the food industry to find consumer friendly plant protein ingredients to replace those from animal sources. Pea (Pisum sativum L.) protein has been extensively studied because it provides good nutritional properties, functionality, is readily available, and has low allergenicity.The focus of this review is a summary of the current progress in understanding and characterizing the use of pea protein as an emulsifier. The emulsification properties of pea protein are described in comparison to other protein emulsifiers. The impact of origin, processing, and environmental conditions like temperature, pH, and ionic strength is discussed. The physicochemical properties of the protein, such as solubility, surface charge, hydrophobicity, and composition are also covered, along with current methods to improve functionality.One of the most valuable functional properties of pea protein is emulsification, which can be affected by its origin, isolation method, and the environmental or processing conditions (pH, ionic strength, and temperature). The physicochemical properties including solubility, surface charge/hydrophobicity, and interfacial properties have been examined to evaluate their emulsifying functionality. While several methods such as complexation, glycosylation, and enzymatic hydrolysis have been developed to further improve the pea protein, there remains a gap between the functionality of laboratory and commercially prepared products. There is an opportunity to increase the functionality of pea protein by understanding and closing this gap.
Author Zhang, Yue
Burger, Travis G.
Author_xml – sequence: 1
  givenname: Travis G.
  orcidid: 0000-0001-9492-6194
  surname: Burger
  fullname: Burger, Travis G.
  organization: Department of Food Science & Technology, University of Nebraska, Lincoln, NE, 68508, USA
– sequence: 2
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  email: yue.zhang@unl.edu
  organization: Department of Food Science & Technology, University of Nebraska, Lincoln, NE, 68508, USA
BookMark eNp9kM1KHTEYQINY8Gr7Aq4C3XQzY34mkxlwU0SrIAhiobuQyXyxucxNxiQj2Kdv5l5XLlyEQHJO-HJO0bEPHhA6p6SmhLYX2zo7m2pGaF8TVhMij9CGdrKvOBH8GG1Iz5qKsaY5QacpbQkpx0Js0J9HMOAznmN4jpASdh7nv4CX7Cb3T2cXPA4Wz6BXJEO51glrj2G3TMlZBxHbsK4wYj3PkzN7KX1FX6yeEnx738_Q75vrp6vb6v7h193Vz_vK8JbmijJruJAjMdIMjZCCw8ABBhADmIH1vZC2ZYPtqYFGQtsOUnRaS6KLYUfCz9CPw7tlvJcFUlY7lwxMk_YQlqQYY6VQ34m2oN8_oNuwRF-m21OMs46LQnUHysSQUgSrjMv7P-Wo3aQoUWtytVVrcrUmV4Spkryo7IM6R7fT8e1z6fIgQan0WnqqZBx4A6OLYLIag_tM_w-0JJ3D
CitedBy_id crossref_primary_10_1016_j_foodhyd_2022_108418
crossref_primary_10_1016_j_tifs_2023_03_023
crossref_primary_10_1016_j_tifs_2022_01_013
crossref_primary_10_1016_j_ultsonch_2023_106577
crossref_primary_10_1007_s11483_023_09797_4
crossref_primary_10_1016_j_tifs_2021_01_090
crossref_primary_10_1016_j_ijbiomac_2023_123487
crossref_primary_10_4014_jmb_2312_12049
crossref_primary_10_3390_foods11152368
crossref_primary_10_3390_foods9111718
crossref_primary_10_1016_j_foodchem_2022_133044
crossref_primary_10_1016_j_foodhyd_2022_107578
crossref_primary_10_1016_j_foodchem_2023_137826
crossref_primary_10_1016_j_lwt_2024_115973
crossref_primary_10_3390_app15179721
crossref_primary_10_1016_j_foodchem_2023_136178
crossref_primary_10_3390_foods10122997
crossref_primary_10_1016_j_foodchem_2024_139820
crossref_primary_10_3390_foods12091883
crossref_primary_10_1080_10408398_2024_2373383
crossref_primary_10_1016_j_foodchem_2025_143269
crossref_primary_10_1007_s11947_024_03425_w
crossref_primary_10_1111_ijfs_16593
crossref_primary_10_3390_foods13010176
crossref_primary_10_1016_j_foodhyd_2024_109741
crossref_primary_10_3389_fpls_2023_1132132
crossref_primary_10_1016_j_foodhyd_2025_111320
crossref_primary_10_1016_j_foodchem_2021_130879
crossref_primary_10_1016_j_ifset_2022_103199
crossref_primary_10_1016_j_foodchem_2022_133726
crossref_primary_10_1088_1755_1315_924_1_012036
crossref_primary_10_1016_j_foodhyd_2023_109008
crossref_primary_10_1016_j_foodres_2021_110740
crossref_primary_10_1016_j_foodchem_2025_145204
crossref_primary_10_1016_j_foodhyd_2022_108415
crossref_primary_10_1016_j_foodhyd_2024_109748
crossref_primary_10_1016_j_foodhyd_2023_108958
crossref_primary_10_1016_j_foodchem_2020_128918
crossref_primary_10_1016_j_foodhyd_2024_110956
crossref_primary_10_1016_j_foodhyd_2024_110158
crossref_primary_10_1016_j_cofs_2019_12_010
crossref_primary_10_1016_j_colsurfa_2024_136076
crossref_primary_10_1016_j_ultsonch_2023_106315
crossref_primary_10_3390_foods11091307
crossref_primary_10_1016_j_fbio_2025_106075
crossref_primary_10_1016_j_foodhyd_2025_111533
crossref_primary_10_1016_j_foodhyd_2023_109132
crossref_primary_10_1016_j_jfoodeng_2022_111172
crossref_primary_10_3389_fsufs_2022_855788
crossref_primary_10_1016_j_foodhyd_2024_109735
crossref_primary_10_1016_j_foodhyd_2023_109019
crossref_primary_10_1016_j_foodhyd_2024_109732
crossref_primary_10_1016_j_foodhyd_2023_108605
crossref_primary_10_3390_plants11233372
crossref_primary_10_1016_j_foodhyd_2023_108607
crossref_primary_10_3390_foods13132054
crossref_primary_10_1016_j_fochx_2025_102608
crossref_primary_10_1016_j_foodchem_2022_135001
crossref_primary_10_1016_j_foodchem_2022_132653
crossref_primary_10_3390_foods12244413
crossref_primary_10_1016_j_ijbiomac_2024_135960
crossref_primary_10_3390_polysaccharides3010002
crossref_primary_10_1016_j_foodres_2025_116506
crossref_primary_10_1016_j_ijbiomac_2025_145708
crossref_primary_10_1016_j_foodhyd_2024_109962
crossref_primary_10_1016_j_ijbiomac_2025_141900
crossref_primary_10_1002_jsfa_13050
crossref_primary_10_1016_j_foodhyd_2024_109960
crossref_primary_10_1016_j_lwt_2022_113465
crossref_primary_10_3389_fnut_2022_977986
crossref_primary_10_1007_s13197_021_05288_x
crossref_primary_10_1016_j_foodchem_2022_132203
crossref_primary_10_1016_j_foodhyd_2025_111622
crossref_primary_10_1016_j_foodres_2025_115845
crossref_primary_10_1007_s43555_025_00057_9
crossref_primary_10_1002_aocs_12779
crossref_primary_10_1016_j_ifset_2022_103166
crossref_primary_10_1016_j_ijbiomac_2025_141438
crossref_primary_10_1080_10408398_2022_2142195
crossref_primary_10_1016_j_tifs_2020_09_012
crossref_primary_10_1111_ijfs_15874
crossref_primary_10_1016_j_foodhyd_2022_107913
crossref_primary_10_1515_ijfe_2025_0004
crossref_primary_10_1016_j_idairyj_2022_105407
crossref_primary_10_1007_s13593_025_01034_1
crossref_primary_10_1007_s11130_025_01321_y
crossref_primary_10_1111_1541_4337_13134
crossref_primary_10_1111_jfpe_14326
crossref_primary_10_1016_j_lwt_2024_116620
crossref_primary_10_1111_ijfs_15746
crossref_primary_10_1080_01932691_2022_2093214
crossref_primary_10_3390_molecules25061383
crossref_primary_10_1016_j_fbio_2023_102740
crossref_primary_10_1007_s10126_021_10026_7
crossref_primary_10_3390_foods11050724
crossref_primary_10_1016_j_jcis_2024_06_111
crossref_primary_10_1080_87559129_2021_1931300
crossref_primary_10_47836_ifrj_31_6_08
crossref_primary_10_1016_j_foodchem_2019_125828
crossref_primary_10_1016_j_ijbiomac_2025_140568
crossref_primary_10_1080_01932691_2025_2513621
crossref_primary_10_1016_j_ijbiomac_2020_02_318
crossref_primary_10_1111_1541_4337_13262
crossref_primary_10_1016_j_foodhyd_2021_106686
crossref_primary_10_1016_j_lwt_2021_112620
crossref_primary_10_11002_fsp_2024_31_1_64
crossref_primary_10_1080_10408398_2022_2067120
crossref_primary_10_1002_aocs_12621
crossref_primary_10_1016_j_foodhyd_2024_110354
crossref_primary_10_1016_j_foodchem_2021_130536
crossref_primary_10_1002_jsfa_11230
crossref_primary_10_1016_j_foodhyd_2021_107409
crossref_primary_10_1002_jsfa_11592
crossref_primary_10_1111_jtxs_12846
crossref_primary_10_1007_s11947_025_03751_7
crossref_primary_10_3390_molecules27165354
crossref_primary_10_1002_aocs_12729
crossref_primary_10_1111_1541_4337_12911
crossref_primary_10_1016_j_ijbiomac_2024_131430
crossref_primary_10_1016_j_jfutfo_2025_08_008
crossref_primary_10_3390_foods11213326
crossref_primary_10_3389_fsufs_2024_1358520
crossref_primary_10_1016_j_jconrel_2023_01_069
crossref_primary_10_3390_gels11030176
crossref_primary_10_1016_j_foodres_2023_113503
crossref_primary_10_1016_j_ijbiomac_2025_142966
crossref_primary_10_1016_j_lwt_2022_113381
crossref_primary_10_1016_j_foodhyd_2022_107719
crossref_primary_10_1007_s11483_021_09686_8
crossref_primary_10_1021_acsfoodscitech_5c00424
crossref_primary_10_1016_j_foodhyd_2020_105777
crossref_primary_10_31677_2072_6724_2021_59_2_53_61
crossref_primary_10_1016_j_colsurfa_2023_131622
crossref_primary_10_1016_j_lwt_2021_111594
crossref_primary_10_3390_molecules25020302
crossref_primary_10_1016_j_ijbiomac_2019_06_199
crossref_primary_10_3389_fsufs_2025_1507120
crossref_primary_10_1007_s10068_024_01683_0
crossref_primary_10_1016_j_foodhyd_2023_108671
crossref_primary_10_1016_j_indcrop_2023_117244
crossref_primary_10_1016_j_jscs_2024_101896
crossref_primary_10_1016_j_foodres_2022_111179
crossref_primary_10_1016_j_meatsci_2022_109086
crossref_primary_10_1016_j_foodhyd_2021_107427
crossref_primary_10_1016_j_foodres_2025_117530
crossref_primary_10_1038_s41598_019_57229_6
crossref_primary_10_1155_jfpp_2966339
crossref_primary_10_1016_j_foodchem_2020_128083
crossref_primary_10_1016_j_foodres_2020_109504
crossref_primary_10_3390_molecules24234288
crossref_primary_10_1016_j_foodhyd_2025_111807
crossref_primary_10_3390_pr12081742
crossref_primary_10_1002_sfp2_70011
crossref_primary_10_1111_jfpe_14417
crossref_primary_10_1002_cche_10503
crossref_primary_10_1111_1541_4337_13342
crossref_primary_10_1016_j_foodres_2022_111060
crossref_primary_10_1016_j_ifset_2024_103587
crossref_primary_10_1002_fob2_70019
crossref_primary_10_1016_j_foodhyd_2023_108562
crossref_primary_10_1016_j_foodres_2022_112390
crossref_primary_10_1007_s12393_025_09408_7
crossref_primary_10_1515_ijfe_2023_0275
crossref_primary_10_1002_csc2_21389
crossref_primary_10_1016_j_foodhyd_2023_108568
crossref_primary_10_1016_j_plipres_2024_101275
crossref_primary_10_1016_j_fbio_2024_103906
crossref_primary_10_1080_10408398_2020_1778632
crossref_primary_10_1016_j_foodhyd_2021_107456
crossref_primary_10_3389_fsufs_2024_1473663
crossref_primary_10_1016_j_jfoodeng_2023_111801
crossref_primary_10_1016_j_talanta_2021_123109
crossref_primary_10_1016_j_foodchem_2023_137561
crossref_primary_10_1007_s11947_024_03323_1
crossref_primary_10_3390_pr12081638
crossref_primary_10_3390_foods11213311
crossref_primary_10_1016_j_lwt_2025_117432
crossref_primary_10_3390_nano12071099
crossref_primary_10_1016_j_lwt_2025_117434
crossref_primary_10_1155_2024_3254132
crossref_primary_10_1111_1541_4337_70218
crossref_primary_10_1111_ijfs_15564
crossref_primary_10_3390_foods12040798
crossref_primary_10_1111_ijfs_15446
crossref_primary_10_1016_j_cis_2024_103123
crossref_primary_10_3390_foods11020178
crossref_primary_10_3390_foods12142703
crossref_primary_10_1016_j_foodchem_2021_129271
crossref_primary_10_1016_j_heliyon_2020_e03615
crossref_primary_10_1016_j_lwt_2021_112495
crossref_primary_10_3390_foods10040882
crossref_primary_10_1016_j_foodhyd_2025_111107
crossref_primary_10_1016_j_foodres_2025_117507
crossref_primary_10_1016_j_foodhyd_2019_105452
crossref_primary_10_3390_pharmaceutics15122757
crossref_primary_10_1002_aocs_12812
crossref_primary_10_1016_j_ultsonch_2022_106099
crossref_primary_10_1002_sfp2_1015
crossref_primary_10_1016_j_foodhyd_2023_109314
crossref_primary_10_1016_j_tifs_2021_12_020
crossref_primary_10_1016_j_foodhyd_2025_111591
crossref_primary_10_1111_ijfs_15599
crossref_primary_10_1007_s11483_025_09944_z
crossref_primary_10_1016_j_cis_2023_102863
crossref_primary_10_3390_foods12030507
crossref_primary_10_1016_j_foodchem_2022_133485
crossref_primary_10_1016_j_foodhyd_2021_107239
crossref_primary_10_1016_j_ijbiomac_2025_143472
crossref_primary_10_1016_j_foodhyd_2021_107474
crossref_primary_10_1007_s11694_021_01151_x
crossref_primary_10_1016_j_foodchem_2023_137344
crossref_primary_10_1016_j_jcis_2023_08_040
crossref_primary_10_1016_j_saa_2025_125770
crossref_primary_10_3390_gels9120970
crossref_primary_10_3390_colloids6040052
crossref_primary_10_1016_j_cocis_2021_101503
crossref_primary_10_3390_foods11162521
crossref_primary_10_3390_foods12132528
crossref_primary_10_1016_j_foodchem_2024_142595
crossref_primary_10_1016_j_ijbiomac_2024_139105
crossref_primary_10_1080_10408398_2023_2227899
crossref_primary_10_1007_s11694_021_01266_1
crossref_primary_10_1016_j_tifs_2021_05_004
crossref_primary_10_1111_1750_3841_17475
crossref_primary_10_1016_j_ifset_2020_102582
crossref_primary_10_1002_sfp2_1026
crossref_primary_10_1016_j_ijbiomac_2020_08_181
crossref_primary_10_1111_ijfs_15586
crossref_primary_10_1016_j_jafr_2025_101712
crossref_primary_10_1016_j_colsurfb_2022_112624
crossref_primary_10_3390_foods10112848
crossref_primary_10_1016_j_cofs_2019_06_006
crossref_primary_10_3390_foods11152299
crossref_primary_10_1016_j_foodchem_2024_138649
crossref_primary_10_1016_j_tifs_2021_01_036
crossref_primary_10_1016_j_foodhyd_2025_111326
crossref_primary_10_1016_j_ultsonch_2022_106195
crossref_primary_10_1111_1541_4337_12573
crossref_primary_10_1016_j_cis_2024_103339
crossref_primary_10_1016_j_foodhyd_2021_106605
crossref_primary_10_1016_j_ijbiomac_2022_07_078
crossref_primary_10_1016_j_foodhyd_2023_108806
crossref_primary_10_1016_j_fbio_2025_105887
crossref_primary_10_1080_10408398_2021_1901649
crossref_primary_10_1016_j_ijbiomac_2024_137273
crossref_primary_10_1016_j_foodchem_2020_128569
crossref_primary_10_1002_advs_202408150
crossref_primary_10_1016_j_foodres_2024_114982
crossref_primary_10_3390_foods12040870
crossref_primary_10_1002_adfm_202101749
crossref_primary_10_1016_j_lwt_2020_110421
crossref_primary_10_1016_j_foodhyd_2023_109225
crossref_primary_10_1016_j_foodchem_2024_142334
crossref_primary_10_3390_coatings10010026
Cites_doi 10.1016/j.lwt.2015.10.051
10.1016/j.foodhyd.2015.06.025
10.1016/j.foodres.2009.07.013
10.1016/j.foodres.2011.01.030
10.1016/j.foodres.2009.07.022
10.1007/s13197-014-1298-6
10.1016/j.foodchem.2007.09.077
10.1016/j.foodhyd.2015.10.015
10.1021/jf801721b
10.1016/S0924-2244(02)00111-5
10.1016/j.tifs.2016.01.023
10.1017/S0007114512000852
10.1016/j.foodhyd.2015.12.033
10.1016/j.foodhyd.2014.07.024
10.1021/jf00014a007
10.1021/acs.jafc.7b00194
10.1002/food.19860300332
10.1016/j.tifs.2016.05.010
10.1016/j.foodchem.2011.03.116
10.3390/molecules20035165
10.1016/j.foodres.2015.11.025
10.1016/j.foodhyd.2013.04.005
10.1021/jf960815k
10.1111/j.1365-2621.2012.02993.x
10.1021/jf902199x
10.1016/j.foodhyd.2016.10.027
10.1002/1521-3803(20011001)45:6<399::AID-FOOD399>3.0.CO;2-0
10.1007/s11483-009-9125-8
10.1016/j.foodchem.2009.04.017
10.1111/j.1750-3841.2007.00475.x
10.1007/s11483-015-9411-6
10.1021/jf0340052
10.1007/s10068-015-0107-y
10.1007/s11947-015-1589-6
10.1016/j.foodhyd.2014.01.001
10.1016/j.colsurfa.2015.07.065
10.1016/S0260-8774(02)00241-8
10.1002/1097-0010(200010)80:13<1964::AID-JSFA737>3.0.CO;2-J
10.1016/j.foodchem.2013.04.038
10.1016/j.carbpol.2009.12.038
10.1016/j.foodres.2011.06.012
10.1016/j.foodres.2014.11.017
10.1016/j.colsurfb.2006.08.019
10.3390/ijms12128372
10.3390/ijms11124973
10.1016/j.foodhyd.2015.02.009
10.1016/j.foodhyd.2016.02.032
10.1016/j.lwt.2014.03.023
10.1016/j.foodres.2016.07.024
10.1021/jf101804g
10.1016/j.foodhyd.2004.10.028
10.1016/j.foodres.2009.07.021
10.1080/02652040701281167
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Apr 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2019
DBID AAYXX
CITATION
7QO
7QR
7ST
7T7
8FD
C1K
F28
FR3
P64
SOI
7S9
L.6
DOI 10.1016/j.tifs.2019.02.007
DatabaseName CrossRef
Biotechnology Research Abstracts
Chemoreception Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biotechnology Research Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-3053
EndPage 33
ExternalDocumentID 10_1016_j_tifs_2019_02_007
S0924224418305296
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
WH7
WUQ
XFK
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QO
7QR
7ST
7T7
8FD
AGCQF
C1K
F28
FR3
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c361t-12fc357d0c7cb45753eb3eebe5becb29957f62bf91ce47e66b758aa70a0c7fd03
ISICitedReferencesCount 287
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465366700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-2244
IngestDate Mon Sep 29 06:13:57 EDT 2025
Wed Aug 13 06:11:09 EDT 2025
Sat Nov 29 07:13:49 EST 2025
Tue Nov 18 20:41:26 EST 2025
Fri Feb 23 02:49:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Emulsifier
Food processing
Pea protein
Physicochemical properties
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-12fc357d0c7cb45753eb3eebe5becb29957f62bf91ce47e66b758aa70a0c7fd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9492-6194
PQID 2221232835
PQPubID 2045388
PageCount 9
ParticipantIDs proquest_miscellaneous_2221019856
proquest_journals_2221232835
crossref_citationtrail_10_1016_j_tifs_2019_02_007
crossref_primary_10_1016_j_tifs_2019_02_007
elsevier_sciencedirect_doi_10_1016_j_tifs_2019_02_007
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Trends in food science & technology
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tsoukala, Papalamprou, Makri, Doxastakis, Braudo (bib52) 2006; 53
Wang, Zhang (bib53) 2017; 65
Peng, Kong, Chen, Zhang, Yang, Hua (bib39) 2016; 52
Karaca, Low, Nickerson (bib24) 2011; 44
Rangel, Domont, Pedrosa, Ferreira (bib41) 2003; 51
Shevkani, Singh, Kaur, Rana (bib44) 2015; 43
Yerramilli, Longmore, Ghosh (bib55) 2017; 64
Amine, Dreher, Helgason, Tadros (bib4) 2014; 39
Fernandez-Avila, Arranz, Guri, Trujillo, Corredig (bib17) 2016; 55
Yin, Zhang, Yao (bib56) 2015; 20
Aluko, Mofolasayo, Watts (bib3) 2009; 57
McCarthy, Kennedy, Hogan, Kelly, Thapa, Murphy (bib35) 2016; 89
O'Sullivan, Beevers, Park, Greenwood, Norton (bib37) 2015; 484
Ladjal-Ettoumi, Boudries, Chibane, Romero (bib27) 2016; 11
Humiski, Aluko (bib23) 2007; 72
Tömösközi, Lásztity, Haraszi, Baticz (bib51) 2001; 45
Boye, Aksay, Roufik, Ribéreau, Mondor, Farnworth (bib11) 2010; 43
Liu, Elmer, Low, Nickerson (bib32) 2010; 43
Stone, Karalash, Tyler, Warkentin, Nickerson (bib46) 2015; 76
Lu, Quillien, Popineau (bib33) 2000; 80
Barac, Cabrilo, Stanojevic, Pesic, Pavlicevic, Zlatkovic (bib9) 2012; 47
Shao, Tang (bib43) 2016; 79
Adebiyi, Aluko (bib1) 2011; 128
Baniel, Caer, Colas, Gueguen (bib6) 1992; 40
Agboola, Mofolasayo, Watts, Aluko (bib2) 2010; 43
Pedrosa, Trisciuzzi, Ferreira (bib38) 1997; 45
O'Sullivan, Murray, Flynn, Norton (bib36) 2016; 53
Barac, Pesic, Stanojevic, Kostic, Bivolarevic (bib10) 2015; 52
Tamm, Herbst, Brodkorb, Drusch (bib48) 2016; 58
Bajaj, Tang, Sablani (bib5) 2015; 8
Makri, Papalamprou, Doxastakis (bib34) 2005; 19
Koyoro, Powers (bib26) 1987; 64
Damodaran, Parkin, Fennema (bib15) 2007
Donsì, Senatore, Huang, Ferrari (bib16) 2010; 58
Fuhrmeister, Meuser (bib19) 2003; 56
Gharsallaoui, Yamauchi, Chambin, Cases, Saurel (bib22) 2010; 80
Tavernier, Wijaya, Van der Meeren, Dewettinck, Patel (bib50) 2016; 50
Xiao, Li, Huang (bib54) 2016; 55
Foegeding, Davis, Doucet, McGuffey (bib18) 2002; 13
Lam, Nickerson (bib29) 2013; 141
Taherian, Mondor, Labranche, Drolet, Ippersiel, Lamarche (bib47) 2011; 44
Schneider, Lacampagne (bib42) 2000; 8
Barać, Čabrilo, Pešić, Stanojević, Pavlićević, Maćej (bib7) 2011; 12
Pierucci, Andrade, Farina, Pedrosa, Rocha-Leao (bib40) 2007; 24
Gharsallaoui, Saurel, Chambin, Cases, Voilley, Cayot (bib21) 2010; 122
Dahl, Foster, Tyler (bib14) 2012; 108
Kimura, Fukuda, Zhang, Motoyama, Maruyama, Utsumi (bib25) 2008; 56
Gharsallaoui, Cases, Chambin, Saurel (bib20) 2009; 4
Dagorn-Scaviner, Gueguen, Lefebvre (bib13) 1986; 30
Casanova, Nakamura, Masuda, Lima, Fialho (bib12) 2008; 107
Liang, Tang (bib30) 2013; 33
Tamnak, Mirhosseini, Tan, Ghazali, Muhammad (bib49) 2016; 56
Ladjal-Ettoumi, Chibane, Romero (bib28) 2016; 66
Stone, Avarmenko, Warkentin, Nickerson (bib45) 2015; 24
Liang, Tang (bib31) 2014; 58
Barac, Cabrilo, Pesic, Stanojevic, Zilic, Macej (bib8) 2010; 11
Kimura (10.1016/j.tifs.2019.02.007_bib25) 2008; 56
Casanova (10.1016/j.tifs.2019.02.007_bib12) 2008; 107
Taherian (10.1016/j.tifs.2019.02.007_bib47) 2011; 44
Xiao (10.1016/j.tifs.2019.02.007_bib54) 2016; 55
Barac (10.1016/j.tifs.2019.02.007_bib9) 2012; 47
Shao (10.1016/j.tifs.2019.02.007_bib43) 2016; 79
Rangel (10.1016/j.tifs.2019.02.007_bib41) 2003; 51
Bajaj (10.1016/j.tifs.2019.02.007_bib5) 2015; 8
Donsì (10.1016/j.tifs.2019.02.007_bib16) 2010; 58
Lam (10.1016/j.tifs.2019.02.007_bib29) 2013; 141
Pedrosa (10.1016/j.tifs.2019.02.007_bib38) 1997; 45
Shevkani (10.1016/j.tifs.2019.02.007_bib44) 2015; 43
Baniel (10.1016/j.tifs.2019.02.007_bib6) 1992; 40
Liu (10.1016/j.tifs.2019.02.007_bib32) 2010; 43
Lu (10.1016/j.tifs.2019.02.007_bib33) 2000; 80
Tamnak (10.1016/j.tifs.2019.02.007_bib49) 2016; 56
Adebiyi (10.1016/j.tifs.2019.02.007_bib1) 2011; 128
McCarthy (10.1016/j.tifs.2019.02.007_bib35) 2016; 89
Gharsallaoui (10.1016/j.tifs.2019.02.007_bib20) 2009; 4
Barać (10.1016/j.tifs.2019.02.007_bib7) 2011; 12
Stone (10.1016/j.tifs.2019.02.007_bib46) 2015; 76
Wang (10.1016/j.tifs.2019.02.007_bib53) 2017; 65
Ladjal-Ettoumi (10.1016/j.tifs.2019.02.007_bib27) 2016; 11
Fuhrmeister (10.1016/j.tifs.2019.02.007_bib19) 2003; 56
Damodaran (10.1016/j.tifs.2019.02.007_bib15) 2007
Foegeding (10.1016/j.tifs.2019.02.007_bib18) 2002; 13
Fernandez-Avila (10.1016/j.tifs.2019.02.007_bib17) 2016; 55
Agboola (10.1016/j.tifs.2019.02.007_bib2) 2010; 43
Aluko (10.1016/j.tifs.2019.02.007_bib3) 2009; 57
Dagorn-Scaviner (10.1016/j.tifs.2019.02.007_bib13) 1986; 30
O'Sullivan (10.1016/j.tifs.2019.02.007_bib36) 2016; 53
Liang (10.1016/j.tifs.2019.02.007_bib31) 2014; 58
Tavernier (10.1016/j.tifs.2019.02.007_bib50) 2016; 50
Gharsallaoui (10.1016/j.tifs.2019.02.007_bib22) 2010; 80
Tamm (10.1016/j.tifs.2019.02.007_bib48) 2016; 58
Tsoukala (10.1016/j.tifs.2019.02.007_bib52) 2006; 53
Liang (10.1016/j.tifs.2019.02.007_bib30) 2013; 33
Barac (10.1016/j.tifs.2019.02.007_bib10) 2015; 52
Gharsallaoui (10.1016/j.tifs.2019.02.007_bib21) 2010; 122
Yerramilli (10.1016/j.tifs.2019.02.007_bib55) 2017; 64
Barac (10.1016/j.tifs.2019.02.007_bib8) 2010; 11
Koyoro (10.1016/j.tifs.2019.02.007_bib26) 1987; 64
O'Sullivan (10.1016/j.tifs.2019.02.007_bib37) 2015; 484
Makri (10.1016/j.tifs.2019.02.007_bib34) 2005; 19
Amine (10.1016/j.tifs.2019.02.007_bib4) 2014; 39
Tömösközi (10.1016/j.tifs.2019.02.007_bib51) 2001; 45
Stone (10.1016/j.tifs.2019.02.007_bib45) 2015; 24
Peng (10.1016/j.tifs.2019.02.007_bib39) 2016; 52
Ladjal-Ettoumi (10.1016/j.tifs.2019.02.007_bib28) 2016; 66
Boye (10.1016/j.tifs.2019.02.007_bib11) 2010; 43
Karaca (10.1016/j.tifs.2019.02.007_bib24) 2011; 44
Dahl (10.1016/j.tifs.2019.02.007_bib14) 2012; 108
Pierucci (10.1016/j.tifs.2019.02.007_bib40) 2007; 24
Yin (10.1016/j.tifs.2019.02.007_bib56) 2015; 20
Humiski (10.1016/j.tifs.2019.02.007_bib23) 2007; 72
Schneider (10.1016/j.tifs.2019.02.007_bib42) 2000; 8
References_xml – volume: 58
  start-page: 10653
  year: 2010
  end-page: 10660
  ident: bib16
  article-title: Development of novel pea protein-based nanoemulsions for delivery of nutraceuticals
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 50
  start-page: 159
  year: 2016
  end-page: 174
  ident: bib50
  article-title: Food-grade particles for emulsion stabilization
  publication-title: Trends in Food Science & Technology
– volume: 4
  start-page: 273
  year: 2009
  end-page: 280
  ident: bib20
  article-title: Interfacial and emulsifying characteristics of acid-treated pea protein
  publication-title: Food Biophysics
– volume: 33
  start-page: 309
  year: 2013
  end-page: 319
  ident: bib30
  article-title: pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins
  publication-title: Food Hydrocolloids
– year: 2007
  ident: bib15
  article-title: Fennema's food chemistry
– volume: 53
  start-page: 203
  year: 2006
  end-page: 208
  ident: bib52
  article-title: Adsorption at the air–water interface and emulsification properties of grain legume protein derivatives from pea and broad bean
  publication-title: Colloids and Surfaces B: Biointerfaces
– volume: 11
  start-page: 4973
  year: 2010
  end-page: 4990
  ident: bib8
  article-title: Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes
  publication-title: International Journal of Molecular Sciences
– volume: 128
  start-page: 902
  year: 2011
  end-page: 908
  ident: bib1
  article-title: Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate
  publication-title: Food Chemistry
– volume: 8
  start-page: 3
  year: 2000
  end-page: 6
  ident: bib42
  article-title: Peas: A European production of protein-rich materials for feed and food
  publication-title: Industrial proteins
– volume: 43
  start-page: 582
  year: 2010
  end-page: 588
  ident: bib2
  article-title: Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols
  publication-title: Food Research International
– volume: 40
  start-page: 200
  year: 1992
  end-page: 205
  ident: bib6
  article-title: Functional properties of glycosylated derivatives of the 11S storage protein from pea (Pisum sativum L.)
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 43
  start-page: 537
  year: 2010
  end-page: 546
  ident: bib11
  article-title: Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques
  publication-title: Food Research International
– volume: 80
  start-page: 817
  year: 2010
  end-page: 827
  ident: bib22
  article-title: Effect of high methoxyl pectin on pea protein in aqueous solution and at oil/water interface
  publication-title: Carbohydrate Polymers
– volume: 80
  start-page: 1964
  year: 2000
  end-page: 1972
  ident: bib33
  article-title: Foaming and emulsifying properties of pea albumin fractions and partial characterisation of surface‐active components
  publication-title: Journal of the Science of Food and Agriculture
– volume: 8
  start-page: 2418
  year: 2015
  end-page: 2428
  ident: bib5
  article-title: Pea protein isolates: Novel wall materials for microencapsulating flaxseed oil
  publication-title: Food and Bioprocess Technology
– volume: 72
  year: 2007
  ident: bib23
  article-title: Physicochemical and bitterness properties of enzymatic pea protein hydrolysates
  publication-title: Journal of Food Science
– volume: 64
  start-page: 99
  year: 2017
  end-page: 111
  ident: bib55
  article-title: Improved stabilization of nanoemulsions by partial replacement of sodium caseinate with pea protein isolate
  publication-title: Food Hydrocolloids
– volume: 58
  start-page: 204
  year: 2016
  end-page: 214
  ident: bib48
  article-title: Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules
  publication-title: Food Hydrocolloids
– volume: 122
  start-page: 447
  year: 2010
  end-page: 454
  ident: bib21
  article-title: Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions
  publication-title: Food Chemistry
– volume: 107
  start-page: 1138
  year: 2008
  end-page: 1143
  ident: bib12
  article-title: Functionality of phosphorylated vicilin exposed to chemical and physical agents
  publication-title: Food Chemistry
– volume: 55
  start-page: 144
  year: 2016
  end-page: 154
  ident: bib17
  article-title: Vegetable protein isolate-stabilized emulsions for enhanced delivery of conjugated linoleic acid in Caco-2 cells
  publication-title: Food Hydrocolloids
– volume: 64
  start-page: 97
  year: 1987
  end-page: 101
  ident: bib26
  article-title: Functional properties of pea globulin fractions
  publication-title: Cereal Chemistry
– volume: 89
  start-page: 415
  year: 2016
  end-page: 421
  ident: bib35
  article-title: Emulsification properties of pea protein isolate using homogenization, microfluidization and ultrasonication
  publication-title: Food Research International
– volume: 52
  start-page: 2779
  year: 2015
  end-page: 2787
  ident: bib10
  article-title: Comparative study of the functional properties of three legume seed isolates: Adzuki, pea and soy bean
  publication-title: Journal of Food Science & Technology
– volume: 52
  start-page: 301
  year: 2016
  end-page: 310
  ident: bib39
  article-title: Effects of heat treatment on the emulsifying properties of pea proteins
  publication-title: Food Hydrocolloids
– volume: 57
  start-page: 9793
  year: 2009
  end-page: 9800
  ident: bib3
  article-title: Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 19
  start-page: 583
  year: 2005
  end-page: 594
  ident: bib34
  article-title: Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides
  publication-title: Food Hydrocolloids
– volume: 30
  start-page: 337
  year: 1986
  end-page: 347
  ident: bib13
  article-title: A comparison of interfacial behaviours of pea (
  publication-title: Food/Nahrung
– volume: 56
  start-page: 119
  year: 2003
  end-page: 129
  ident: bib19
  article-title: Impact of processing on functional properties of protein products from wrinkled peas
  publication-title: Journal of Food Engineering
– volume: 43
  start-page: 679
  year: 2015
  end-page: 689
  ident: bib44
  article-title: Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study
  publication-title: Food Hydrocolloids
– volume: 108
  start-page: S3
  year: 2012
  end-page: S10
  ident: bib14
  article-title: Review of the health benefits of peas (Pisum sativum L.)
  publication-title: British Journal of Nutrition
– volume: 39
  start-page: 180
  year: 2014
  end-page: 186
  ident: bib4
  article-title: Investigation of emulsifying properties and emulsion stability of plant and milk proteins using interfacial tension and interfacial elasticity
  publication-title: Food Hydrocolloids
– volume: 141
  start-page: 975
  year: 2013
  end-page: 984
  ident: bib29
  article-title: Food proteins: A review on their emulsifying properties using a structure–function approach
  publication-title: Food Chemistry
– volume: 56
  start-page: 10273
  year: 2008
  end-page: 10279
  ident: bib25
  article-title: Comparison of physicochemical properties of 7S and 11S globulins from pea, fava bean, cowpea, and French bean with those of soybean-French bean 7S globulin exhibits excellent properties
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 55
  start-page: 48
  year: 2016
  end-page: 60
  ident: bib54
  article-title: Recent advances on food-grade particles stabilized pickering emulsions: Fabrication, characterization and research trends
  publication-title: Trends in Food Science & Technology
– volume: 76
  start-page: 31
  year: 2015
  end-page: 38
  ident: bib46
  article-title: Functional attributes of pea protein isolates prepared using different extraction methods and cultivars
  publication-title: Food Research International
– volume: 53
  start-page: 141
  year: 2016
  end-page: 154
  ident: bib36
  article-title: The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins
  publication-title: Food Hydrocolloids
– volume: 56
  start-page: 405
  year: 2016
  end-page: 416
  ident: bib49
  article-title: Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion
  publication-title: Food Hydrocolloids
– volume: 65
  start-page: 2990
  year: 2017
  end-page: 2998
  ident: bib53
  article-title: Eugenol nanoemulsion stabilized with zein and sodium caseinate by self-assembly
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 12
  start-page: 8372
  year: 2011
  end-page: 8387
  ident: bib7
  article-title: Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin
  publication-title: International Journal of Molecular Sciences
– volume: 484
  start-page: 89
  year: 2015
  end-page: 98
  ident: bib37
  article-title: Comparative assessment of the effect of ultrasound treatment on protein functionality pre-and post-emulsification
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 51
  start-page: 5792
  year: 2003
  end-page: 5797
  ident: bib41
  article-title: Functional properties of purified vicilins from cowpea (Vigna unguiculata) and pea (Pisum sativum) and cowpea protein isolate
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 24
  start-page: 827
  year: 2015
  end-page: 833
  ident: bib45
  article-title: Functional properties of protein isolates from different pea cultivars
  publication-title: Food Science and Biotechnology
– volume: 45
  start-page: 399
  year: 2001
  ident: bib51
  article-title: Isolation and study of the functional properties of pea proteins
  publication-title: Nahrung-Food
– volume: 47
  start-page: 1457
  year: 2012
  end-page: 1467
  ident: bib9
  article-title: Functional properties of protein hydrolysates from pea (Pisum sativum, L) seeds
  publication-title: International Journal of Food Science and Technology
– volume: 45
  start-page: 2025
  year: 1997
  end-page: 2030
  ident: bib38
  article-title: Effects of glycosylation on functional properties of vicilin, the 7S storage globulin from pea (Pisum sativum)
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 43
  start-page: 489
  year: 2010
  end-page: 495
  ident: bib32
  article-title: Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes
  publication-title: Food Research International
– volume: 66
  start-page: 260
  year: 2016
  end-page: 266
  ident: bib28
  article-title: Emulsifying properties of legume proteins at acidic conditions: Effect of protein concentration and ionic strength
  publication-title: LWT-Food Science and Technology
– volume: 11
  start-page: 43
  year: 2016
  end-page: 51
  ident: bib27
  article-title: Pea, chickpea and lentil protein isolates: Physicochemical characterization and emulsifying properties
  publication-title: Food Biophysics
– volume: 24
  start-page: 201
  year: 2007
  end-page: 213
  ident: bib40
  article-title: Comparison of alpha-tocopherol microparticles produced with different wall materials: Pea protein a new interesting alternative
  publication-title: Journal of Microencapsulation
– volume: 44
  start-page: 2505
  year: 2011
  end-page: 2514
  ident: bib47
  article-title: Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates
  publication-title: Food Research International
– volume: 13
  start-page: 151
  year: 2002
  end-page: 159
  ident: bib18
  article-title: Advances in modifying and understanding whey protein functionality
  publication-title: Trends in Food Science & Technology
– volume: 20
  start-page: 5165
  year: 2015
  end-page: 5183
  ident: bib56
  article-title: Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions
  publication-title: Molecules
– volume: 44
  start-page: 2742
  year: 2011
  end-page: 2750
  ident: bib24
  article-title: Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction
  publication-title: Food Research International
– volume: 58
  start-page: 463
  year: 2014
  end-page: 469
  ident: bib31
  article-title: Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0
  publication-title: LWT-Food Science and Technology
– volume: 79
  start-page: 64
  year: 2016
  end-page: 72
  ident: bib43
  article-title: Gel-like pea protein Pickering emulsions at pH3. 0 as a potential intestine-targeted and sustained-release delivery system for β-carotene
  publication-title: Food Research International
– volume: 66
  start-page: 260
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib28
  article-title: Emulsifying properties of legume proteins at acidic conditions: Effect of protein concentration and ionic strength
  publication-title: LWT-Food Science and Technology
  doi: 10.1016/j.lwt.2015.10.051
– volume: 52
  start-page: 301
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib39
  article-title: Effects of heat treatment on the emulsifying properties of pea proteins
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2015.06.025
– volume: 43
  start-page: 582
  year: 2010
  ident: 10.1016/j.tifs.2019.02.007_bib2
  article-title: Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2009.07.013
– volume: 44
  start-page: 2505
  year: 2011
  ident: 10.1016/j.tifs.2019.02.007_bib47
  article-title: Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2011.01.030
– volume: 8
  start-page: 3
  year: 2000
  ident: 10.1016/j.tifs.2019.02.007_bib42
  article-title: Peas: A European production of protein-rich materials for feed and food
  publication-title: Industrial proteins
– volume: 43
  start-page: 489
  year: 2010
  ident: 10.1016/j.tifs.2019.02.007_bib32
  article-title: Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2009.07.022
– volume: 52
  start-page: 2779
  year: 2015
  ident: 10.1016/j.tifs.2019.02.007_bib10
  article-title: Comparative study of the functional properties of three legume seed isolates: Adzuki, pea and soy bean
  publication-title: Journal of Food Science & Technology
  doi: 10.1007/s13197-014-1298-6
– volume: 107
  start-page: 1138
  year: 2008
  ident: 10.1016/j.tifs.2019.02.007_bib12
  article-title: Functionality of phosphorylated vicilin exposed to chemical and physical agents
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2007.09.077
– volume: 55
  start-page: 144
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib17
  article-title: Vegetable protein isolate-stabilized emulsions for enhanced delivery of conjugated linoleic acid in Caco-2 cells
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2015.10.015
– year: 2007
  ident: 10.1016/j.tifs.2019.02.007_bib15
– volume: 56
  start-page: 10273
  year: 2008
  ident: 10.1016/j.tifs.2019.02.007_bib25
  article-title: Comparison of physicochemical properties of 7S and 11S globulins from pea, fava bean, cowpea, and French bean with those of soybean-French bean 7S globulin exhibits excellent properties
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf801721b
– volume: 13
  start-page: 151
  year: 2002
  ident: 10.1016/j.tifs.2019.02.007_bib18
  article-title: Advances in modifying and understanding whey protein functionality
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/S0924-2244(02)00111-5
– volume: 50
  start-page: 159
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib50
  article-title: Food-grade particles for emulsion stabilization
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2016.01.023
– volume: 108
  start-page: S3
  year: 2012
  ident: 10.1016/j.tifs.2019.02.007_bib14
  article-title: Review of the health benefits of peas (Pisum sativum L.)
  publication-title: British Journal of Nutrition
  doi: 10.1017/S0007114512000852
– volume: 56
  start-page: 405
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib49
  article-title: Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2015.12.033
– volume: 43
  start-page: 679
  year: 2015
  ident: 10.1016/j.tifs.2019.02.007_bib44
  article-title: Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.07.024
– volume: 40
  start-page: 200
  year: 1992
  ident: 10.1016/j.tifs.2019.02.007_bib6
  article-title: Functional properties of glycosylated derivatives of the 11S storage protein from pea (Pisum sativum L.)
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf00014a007
– volume: 65
  start-page: 2990
  year: 2017
  ident: 10.1016/j.tifs.2019.02.007_bib53
  article-title: Eugenol nanoemulsion stabilized with zein and sodium caseinate by self-assembly
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.7b00194
– volume: 30
  start-page: 337
  year: 1986
  ident: 10.1016/j.tifs.2019.02.007_bib13
  article-title: A comparison of interfacial behaviours of pea (Pisum sativum L.) legumin and vicilin at air/water interface
  publication-title: Food/Nahrung
  doi: 10.1002/food.19860300332
– volume: 55
  start-page: 48
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib54
  article-title: Recent advances on food-grade particles stabilized pickering emulsions: Fabrication, characterization and research trends
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2016.05.010
– volume: 128
  start-page: 902
  year: 2011
  ident: 10.1016/j.tifs.2019.02.007_bib1
  article-title: Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2011.03.116
– volume: 20
  start-page: 5165
  year: 2015
  ident: 10.1016/j.tifs.2019.02.007_bib56
  article-title: Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions
  publication-title: Molecules
  doi: 10.3390/molecules20035165
– volume: 79
  start-page: 64
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib43
  article-title: Gel-like pea protein Pickering emulsions at pH3. 0 as a potential intestine-targeted and sustained-release delivery system for β-carotene
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2015.11.025
– volume: 33
  start-page: 309
  year: 2013
  ident: 10.1016/j.tifs.2019.02.007_bib30
  article-title: pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2013.04.005
– volume: 45
  start-page: 2025
  year: 1997
  ident: 10.1016/j.tifs.2019.02.007_bib38
  article-title: Effects of glycosylation on functional properties of vicilin, the 7S storage globulin from pea (Pisum sativum)
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf960815k
– volume: 47
  start-page: 1457
  year: 2012
  ident: 10.1016/j.tifs.2019.02.007_bib9
  article-title: Functional properties of protein hydrolysates from pea (Pisum sativum, L) seeds
  publication-title: International Journal of Food Science and Technology
  doi: 10.1111/j.1365-2621.2012.02993.x
– volume: 57
  start-page: 9793
  year: 2009
  ident: 10.1016/j.tifs.2019.02.007_bib3
  article-title: Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf902199x
– volume: 64
  start-page: 99
  year: 2017
  ident: 10.1016/j.tifs.2019.02.007_bib55
  article-title: Improved stabilization of nanoemulsions by partial replacement of sodium caseinate with pea protein isolate
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.10.027
– volume: 45
  start-page: 399
  year: 2001
  ident: 10.1016/j.tifs.2019.02.007_bib51
  article-title: Isolation and study of the functional properties of pea proteins
  publication-title: Nahrung-Food
  doi: 10.1002/1521-3803(20011001)45:6<399::AID-FOOD399>3.0.CO;2-0
– volume: 4
  start-page: 273
  year: 2009
  ident: 10.1016/j.tifs.2019.02.007_bib20
  article-title: Interfacial and emulsifying characteristics of acid-treated pea protein
  publication-title: Food Biophysics
  doi: 10.1007/s11483-009-9125-8
– volume: 122
  start-page: 447
  year: 2010
  ident: 10.1016/j.tifs.2019.02.007_bib21
  article-title: Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2009.04.017
– volume: 72
  year: 2007
  ident: 10.1016/j.tifs.2019.02.007_bib23
  article-title: Physicochemical and bitterness properties of enzymatic pea protein hydrolysates
  publication-title: Journal of Food Science
  doi: 10.1111/j.1750-3841.2007.00475.x
– volume: 11
  start-page: 43
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib27
  article-title: Pea, chickpea and lentil protein isolates: Physicochemical characterization and emulsifying properties
  publication-title: Food Biophysics
  doi: 10.1007/s11483-015-9411-6
– volume: 51
  start-page: 5792
  year: 2003
  ident: 10.1016/j.tifs.2019.02.007_bib41
  article-title: Functional properties of purified vicilins from cowpea (Vigna unguiculata) and pea (Pisum sativum) and cowpea protein isolate
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf0340052
– volume: 24
  start-page: 827
  year: 2015
  ident: 10.1016/j.tifs.2019.02.007_bib45
  article-title: Functional properties of protein isolates from different pea cultivars
  publication-title: Food Science and Biotechnology
  doi: 10.1007/s10068-015-0107-y
– volume: 8
  start-page: 2418
  year: 2015
  ident: 10.1016/j.tifs.2019.02.007_bib5
  article-title: Pea protein isolates: Novel wall materials for microencapsulating flaxseed oil
  publication-title: Food and Bioprocess Technology
  doi: 10.1007/s11947-015-1589-6
– volume: 39
  start-page: 180
  year: 2014
  ident: 10.1016/j.tifs.2019.02.007_bib4
  article-title: Investigation of emulsifying properties and emulsion stability of plant and milk proteins using interfacial tension and interfacial elasticity
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.01.001
– volume: 484
  start-page: 89
  year: 2015
  ident: 10.1016/j.tifs.2019.02.007_bib37
  article-title: Comparative assessment of the effect of ultrasound treatment on protein functionality pre-and post-emulsification
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2015.07.065
– volume: 56
  start-page: 119
  year: 2003
  ident: 10.1016/j.tifs.2019.02.007_bib19
  article-title: Impact of processing on functional properties of protein products from wrinkled peas
  publication-title: Journal of Food Engineering
  doi: 10.1016/S0260-8774(02)00241-8
– volume: 80
  start-page: 1964
  year: 2000
  ident: 10.1016/j.tifs.2019.02.007_bib33
  article-title: Foaming and emulsifying properties of pea albumin fractions and partial characterisation of surface‐active components
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/1097-0010(200010)80:13<1964::AID-JSFA737>3.0.CO;2-J
– volume: 141
  start-page: 975
  year: 2013
  ident: 10.1016/j.tifs.2019.02.007_bib29
  article-title: Food proteins: A review on their emulsifying properties using a structure–function approach
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2013.04.038
– volume: 80
  start-page: 817
  year: 2010
  ident: 10.1016/j.tifs.2019.02.007_bib22
  article-title: Effect of high methoxyl pectin on pea protein in aqueous solution and at oil/water interface
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2009.12.038
– volume: 44
  start-page: 2742
  year: 2011
  ident: 10.1016/j.tifs.2019.02.007_bib24
  article-title: Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2011.06.012
– volume: 76
  start-page: 31
  year: 2015
  ident: 10.1016/j.tifs.2019.02.007_bib46
  article-title: Functional attributes of pea protein isolates prepared using different extraction methods and cultivars
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2014.11.017
– volume: 53
  start-page: 203
  year: 2006
  ident: 10.1016/j.tifs.2019.02.007_bib52
  article-title: Adsorption at the air–water interface and emulsification properties of grain legume protein derivatives from pea and broad bean
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2006.08.019
– volume: 12
  start-page: 8372
  year: 2011
  ident: 10.1016/j.tifs.2019.02.007_bib7
  article-title: Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms12128372
– volume: 11
  start-page: 4973
  year: 2010
  ident: 10.1016/j.tifs.2019.02.007_bib8
  article-title: Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms11124973
– volume: 53
  start-page: 141
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib36
  article-title: The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2015.02.009
– volume: 58
  start-page: 204
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib48
  article-title: Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.02.032
– volume: 58
  start-page: 463
  year: 2014
  ident: 10.1016/j.tifs.2019.02.007_bib31
  article-title: Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0
  publication-title: LWT-Food Science and Technology
  doi: 10.1016/j.lwt.2014.03.023
– volume: 89
  start-page: 415
  year: 2016
  ident: 10.1016/j.tifs.2019.02.007_bib35
  article-title: Emulsification properties of pea protein isolate using homogenization, microfluidization and ultrasonication
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2016.07.024
– volume: 58
  start-page: 10653
  year: 2010
  ident: 10.1016/j.tifs.2019.02.007_bib16
  article-title: Development of novel pea protein-based nanoemulsions for delivery of nutraceuticals
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf101804g
– volume: 19
  start-page: 583
  year: 2005
  ident: 10.1016/j.tifs.2019.02.007_bib34
  article-title: Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2004.10.028
– volume: 64
  start-page: 97
  year: 1987
  ident: 10.1016/j.tifs.2019.02.007_bib26
  article-title: Functional properties of pea globulin fractions
  publication-title: Cereal Chemistry
– volume: 43
  start-page: 537
  year: 2010
  ident: 10.1016/j.tifs.2019.02.007_bib11
  article-title: Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2009.07.021
– volume: 24
  start-page: 201
  year: 2007
  ident: 10.1016/j.tifs.2019.02.007_bib40
  article-title: Comparison of alpha-tocopherol microparticles produced with different wall materials: Pea protein a new interesting alternative
  publication-title: Journal of Microencapsulation
  doi: 10.1080/02652040701281167
SSID ssj0005355
Score 2.6621866
SecondaryResourceType review_article
Snippet There is an increasing movement within the food industry to find consumer friendly plant protein ingredients to replace those from animal sources. Pea (Pisum...
Background There is an increasing movement within the food industry to find consumer friendly plant protein ingredients to replace those from animal sources....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25
SubjectTerms Allergenicity
animal source protein
Emulsification
Emulsifier
Emulsifiers
emulsifying
emulsifying properties
Environmental conditions
environmental factors
enzymatic hydrolysis
Food industry
Food processing
Food processing industry
Glycosylation
Hydrophobicity
ingredients
Interfacial properties
Ionic strength
isolation techniques
nutritive value
Pea protein
peas
pH effects
Physicochemical properties
Pisum sativum
Proteins
Solubility
Surface charge
temperature
Title Recent progress in the utilization of pea protein as an emulsifier for food applications
URI https://dx.doi.org/10.1016/j.tifs.2019.02.007
https://www.proquest.com/docview/2221232835
https://www.proquest.com/docview/2221019856
Volume 86
WOSCitedRecordID wos000465366700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005355
  issn: 0924-2244
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdgQwIOCAaIwkBGYqcqqI6TODkOaAVoKhw6KZwsO7GlTiUtTYv25_Ne7HxoE9M4cImq2E4qv5_fe3mfhLwrFDZ6Y1mgNVqrQmECZbgKIlayqAyZSVTaNJsQ83ma59l3n65YN-0ERFWll5fZ5r-SGu4BsTF19h_I3T0UbsBvIDpcgexwvRXhQRFE_34TeIVszAcywhtXPueyiXI2atzUaIBhhXWax-bnflUvLWafYOihxXLHQ_f2UI3tI2mbaW1uEMJod81W_6HJvG6AscWaBn07r85a_WNvhuYHlg2iVrwdMYwC0AOiIUtNk_HmfRgHnA95YzyQsm7kGv92poQLENcWa6mzzBVUFb20aj30829ydn52JhfTfHHCZ5tfAXYSQ4_7Cf_kqHqXHIYizoDXHZ5-meZf-9Af3nTD7f66T6ZycX9XX_03heWK6G70kcVj8sh_SNBTB4An5I6pjsj9Ns-8PiIPB6Umn5LcwYK2sKDLigIs6AAWdG0pwIJ6WFBVU1XRHhYUYEGR3nQIi2fkfDZdfPwc-K4aQcETtgtYaAsei3JSiEJHoK1zo7mBsxzDcdagncTCJqG2GStMJEySaPikVEpMFKyw5YQ_JwfVujIvCC30xJRpFIe2zCLQqzWLjLAK5FYibJToEWHt1snCl5zHzicr2cYWXkjcbonbLSehhO0ekXG3ZuMKrtw4O24pIj3WnSooAVE3rjtuySf92YXxEPU4LEA4Im-7YWC36ENTlVnv3Rx4TBonL28x5xV50J-ZY3Kw2-7Na3Kv-L1b1ts3HpZ_ABElo24
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+the+utilization+of+pea+protein+as+an+emulsifier+for+food+applications&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Burger%2C+Travis+G&rft.au=Zhang%2C+Yue&rft.date=2019-04-01&rft.issn=0924-2244&rft.volume=86+p.25-33&rft.spage=25&rft.epage=33&rft_id=info:doi/10.1016%2Fj.tifs.2019.02.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon