A space-efficient fast prime number sieve
We present a new algorithm that finds all primes up to n using at most O( n log log n ) arithmetic operations and O( n (log n log log n) ) space. This algorithm is an improvement of a linear prime number sieve due to Pritchard. Our new algorithm matches the running time of the best previous prime nu...
Uloženo v:
| Vydáno v: | Information processing letters Ročník 59; číslo 2; s. 79 - 84 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
22.07.1996
Elsevier Science Elsevier Sequoia S.A |
| Témata: | |
| ISSN: | 0020-0190, 1872-6119 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a new algorithm that finds all primes up to
n using at most
O(
n
log log n
)
arithmetic operations and
O(
n
(log n log log n)
)
space. This algorithm is an improvement of a linear prime number sieve due to Pritchard. Our new algorithm matches the running time of the best previous prime number sieve, but uses less space by a factor of
Θ (
log
n). In addition, we present the results of our implementations of most known prime number sieves. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/0020-0190(96)00099-3 |