First-order Answer Set Programming as Constructive Proof Search

We propose an interpretation of the first-order answer set programming (FOASP) in terms of intuitionistic proof theory. It is obtained by two polynomial translations between FOASP and the bounded-arity fragment of the Σ1 level of the Mints hierarchy in first-order intuitionistic logic. It follows th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theory and practice of logic programming Ročník 18; číslo 3-4; s. 673 - 690
Hlavní autori: SCHUBERT, ALEKSY, URZYCZYN, PAWEŁ
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.07.2018
Predmet:
ISSN:1471-0684, 1475-3081
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We propose an interpretation of the first-order answer set programming (FOASP) in terms of intuitionistic proof theory. It is obtained by two polynomial translations between FOASP and the bounded-arity fragment of the Σ1 level of the Mints hierarchy in first-order intuitionistic logic. It follows that Σ1 formulas using predicates of fixed arity (in particular unary) is of the same strength as FOASP. Our construction reveals a close similarity between constructive provability and stable entailment, or equivalently, between the construction of an answer set and an intuitionistic refutation. This paper is under consideration for publication in Theory and Practice of Logic Programming
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1471-0684
1475-3081
DOI:10.1017/S147106841800008X