Application of Least Squares Lattice Algorithms to Adaptive Equalization

In many applications of adaptive data equalization, rapid initial convergence of the adaptive equalizer is of paramount importance. Apparently, the fastest known equalizer adaptation algorithm is based on a recursive least squares estimation algorithm. In this paper we show how the least squares lat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on communications Ročník 29; číslo 2; s. 136 - 142
Hlavní autori: Satorius, E., Pack, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.02.1981
Predmet:
ISSN:0090-6778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In many applications of adaptive data equalization, rapid initial convergence of the adaptive equalizer is of paramount importance. Apparently, the fastest known equalizer adaptation algorithm is based on a recursive least squares estimation algorithm. In this paper we show how the least squares lattice algorithms, recently introduced by Morf and Lee, can be adapted to the equalizer adjustment algorithm. The resulting algorithm, although computationally more complex than certain other equalizer algorithms (including the fast Kalman algorithm), has a number of desirable features which should prove useful in many applications.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
DOI:10.1109/TCOM.1981.1094968