Application of Least Squares Lattice Algorithms to Adaptive Equalization

In many applications of adaptive data equalization, rapid initial convergence of the adaptive equalizer is of paramount importance. Apparently, the fastest known equalizer adaptation algorithm is based on a recursive least squares estimation algorithm. In this paper we show how the least squares lat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications Jg. 29; H. 2; S. 136 - 142
Hauptverfasser: Satorius, E., Pack, J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.02.1981
Schlagworte:
ISSN:0090-6778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many applications of adaptive data equalization, rapid initial convergence of the adaptive equalizer is of paramount importance. Apparently, the fastest known equalizer adaptation algorithm is based on a recursive least squares estimation algorithm. In this paper we show how the least squares lattice algorithms, recently introduced by Morf and Lee, can be adapted to the equalizer adjustment algorithm. The resulting algorithm, although computationally more complex than certain other equalizer algorithms (including the fast Kalman algorithm), has a number of desirable features which should prove useful in many applications.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
DOI:10.1109/TCOM.1981.1094968