FRACTAL BASES FOR BANACH SPACES OF SMOOTH FUNCTIONS

This article explores the properties of fractal interpolation functions with variable scaling parameters, in the context of smooth fractal functions. The first part extends the Barnsley–Harrington theorem for differentiability of fractal functions and the fractal analogue of Hermite interpolation to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bulletin of the Australian Mathematical Society Ročník 92; číslo 3; s. 405 - 419
Hlavní autori: NAVASCUÉS, M. A., VISWANATHAN, P., CHAND, A. K. B., SEBASTIÁN, M. V., KATIYAR, S. K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.12.2015
Predmet:
ISSN:0004-9727, 1755-1633
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article explores the properties of fractal interpolation functions with variable scaling parameters, in the context of smooth fractal functions. The first part extends the Barnsley–Harrington theorem for differentiability of fractal functions and the fractal analogue of Hermite interpolation to the present setting. The general result is applied on a special class of iterated function systems in order to develop differentiability of the so-called $\boldsymbol{{\it\alpha}}$-fractal functions. This leads to a bounded linear map on the space ${\mathcal{C}}^{k}(I)$ which is exploited to prove the existence of a Schauder basis for ${\mathcal{C}}^{k}(I)$ consisting of smooth fractal functions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972715000738