Second-order variational analysis and characterizations of tilt-stable optimal solutions in infinite-dimensional spaces
The paper is devoted to developing second-order tools of variational analysis and their applications to characterizing tilt-stable local minimizers of constrained optimization problems infinite-dimensional spaces with many results new also in finite-dimensional settings. The importance of tilt stabi...
Saved in:
| Published in: | Nonlinear analysis Vol. 86; pp. 159 - 180 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2013
|
| Subjects: | |
| ISSN: | 0362-546X, 1873-5215 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The paper is devoted to developing second-order tools of variational analysis and their applications to characterizing tilt-stable local minimizers of constrained optimization problems infinite-dimensional spaces with many results new also in finite-dimensional settings. The importance of tilt stability has been well recognized from both theoretical and numerical aspects of optimization. Based on second-order generalized differentiation, we obtain qualitative and quantitative characterizations of tilt stability in general frameworks of constrained optimization and establish its relationships with strong metric regularity of subgradient mappings and uniform second-order growth. The results obtained are applied to deriving new necessary and sufficient conditions for tilt-stable minimizers in problems of nonlinear programming with twice continuously differentiable data in Hilbert spaces. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0362-546X 1873-5215 |
| DOI: | 10.1016/j.na.2013.03.014 |