Loops in canonical RNA pseudoknot structures

In this article, we compute the limit distributions of the numbers of hairpin-loops, interior-loops and bulges in k-noncrossing RNA structures. The latter are coarse-grained RNA structures allowing for cross-serial interactions, subject to the constraint that there are at most k - 1 mutually crossin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology Jg. 18; H. 12; S. 1793
Hauptverfasser: Nebel, Markus E, Reidys, Christian M, Wang, Rita R
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.12.2011
Schlagworte:
ISSN:1557-8666, 1557-8666
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we compute the limit distributions of the numbers of hairpin-loops, interior-loops and bulges in k-noncrossing RNA structures. The latter are coarse-grained RNA structures allowing for cross-serial interactions, subject to the constraint that there are at most k - 1 mutually crossing arcs in the diagram representation of the molecule. We prove central limit theorems by means of studying the corresponding bivariate generating functions. These generating functions are obtained by symbolic inflation of [Formula: see text]-shapes introduced by Reidys and Wang (2009).
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1557-8666
1557-8666
DOI:10.1089/cmb.2010.0022