Loops in canonical RNA pseudoknot structures

In this article, we compute the limit distributions of the numbers of hairpin-loops, interior-loops and bulges in k-noncrossing RNA structures. The latter are coarse-grained RNA structures allowing for cross-serial interactions, subject to the constraint that there are at most k - 1 mutually crossin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational biology Ročník 18; číslo 12; s. 1793
Hlavní autoři: Nebel, Markus E, Reidys, Christian M, Wang, Rita R
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.12.2011
Témata:
ISSN:1557-8666, 1557-8666
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we compute the limit distributions of the numbers of hairpin-loops, interior-loops and bulges in k-noncrossing RNA structures. The latter are coarse-grained RNA structures allowing for cross-serial interactions, subject to the constraint that there are at most k - 1 mutually crossing arcs in the diagram representation of the molecule. We prove central limit theorems by means of studying the corresponding bivariate generating functions. These generating functions are obtained by symbolic inflation of [Formula: see text]-shapes introduced by Reidys and Wang (2009).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1557-8666
1557-8666
DOI:10.1089/cmb.2010.0022