Splitting full matrix algebras over algebraic number fields
Let K be a fixed algebraic number field and let A be an associative algebra over K given by structure constants such that A≅Mn(K) holds for some positive integer n. Suppose that n is bounded. Then an isomorphism A→Mn(K) can be constructed by a polynomial time ff-algorithm. An ff-algorithm is a deter...
Uloženo v:
| Vydáno v: | Journal of algebra Ročník 354; číslo 1; s. 211 - 223 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.03.2012
|
| Témata: | |
| ISSN: | 0021-8693, 1090-266X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let K be a fixed algebraic number field and let A be an associative algebra over K given by structure constants such that A≅Mn(K) holds for some positive integer n. Suppose that n is bounded. Then an isomorphism A→Mn(K) can be constructed by a polynomial time ff-algorithm. An ff-algorithm is a deterministic procedure which is allowed to call oracles for factoring integers and factoring univariate polynomials over finite fields.
As a consequence, we obtain a polynomial time ff-algorithm to compute isomorphisms of central simple algebras of bounded degree over K. |
|---|---|
| ISSN: | 0021-8693 1090-266X |
| DOI: | 10.1016/j.jalgebra.2012.01.008 |