Splitting full matrix algebras over algebraic number fields

Let K be a fixed algebraic number field and let A be an associative algebra over K given by structure constants such that A≅Mn(K) holds for some positive integer n. Suppose that n is bounded. Then an isomorphism A→Mn(K) can be constructed by a polynomial time ff-algorithm. An ff-algorithm is a deter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of algebra Ročník 354; číslo 1; s. 211 - 223
Hlavní autoři: Ivanyos, Gábor, Rónyai, Lajos, Schicho, Josef
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.03.2012
Témata:
ISSN:0021-8693, 1090-266X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let K be a fixed algebraic number field and let A be an associative algebra over K given by structure constants such that A≅Mn(K) holds for some positive integer n. Suppose that n is bounded. Then an isomorphism A→Mn(K) can be constructed by a polynomial time ff-algorithm. An ff-algorithm is a deterministic procedure which is allowed to call oracles for factoring integers and factoring univariate polynomials over finite fields. As a consequence, we obtain a polynomial time ff-algorithm to compute isomorphisms of central simple algebras of bounded degree over K.
ISSN:0021-8693
1090-266X
DOI:10.1016/j.jalgebra.2012.01.008