Some Remarks About Conservation for Residual Distribution Schemes

We are interested in the discretisation of the steady version of hyperbolic problems. We first show that all the known schemes (up to our knowledge) can be rephrased in a common framework. Using this framework, we then show they flux formulation, with an explicit construction of the flux, and thus a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational methods in applied mathematics Ročník 18; číslo 3; s. 327 - 351
Hlavný autor: Abgrall, Rémi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Minsk De Gruyter 01.07.2018
Walter de Gruyter GmbH
Predmet:
ISSN:1609-4840, 1609-9389
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We are interested in the discretisation of the steady version of hyperbolic problems. We first show that all the known schemes (up to our knowledge) can be rephrased in a common framework. Using this framework, we then show they flux formulation, with an explicit construction of the flux, and thus are locally conservative. This is well known for the finite volume schemes or the discontinuous Galerkin ones, much less known for the continuous finite element methods. We also show that Tadmor’s entropy stability formulation can naturally be rephrased in this framework as an additional conservation relation discretisation, and using this, we show some connections with the recent papers [ , , , ]. This contribution is an enhanced version of [ ].
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1609-4840
1609-9389
DOI:10.1515/cmam-2017-0056