An improved artificial bee colony algorithm with modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization

Artificial bee colony (ABC) is a novel swarm intelligence optimization algorithm that has been shown to be effective in solving high dimensional global optimization problem with good performance for its excellent exploration capability. It has received a great deal of attentions of researchers since...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering applications of artificial intelligence Ročník 58; s. 134 - 156
Hlavní autori: Zhong, Fuli, Li, Hui, Zhong, Shouming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2017
Predmet:
ISSN:0952-1976, 1873-6769
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Artificial bee colony (ABC) is a novel swarm intelligence optimization algorithm that has been shown to be effective in solving high dimensional global optimization problem with good performance for its excellent exploration capability. It has received a great deal of attentions of researchers since it was proposed, and was employed to many application fields for its advantages of excellent global optimization ability and easy to implement. However, the basic ABC has some drawbacks like poor exploitation and slow convergence. In this paper, an improved artificial bee colony algorithm based on modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization called MNIIABC algorithm is proposed. In the proposed algorithm, a modified-neighborhood-based update operator, which contains a global-best term and a subset-best guided term, is applied in the employed bee stage to balance the exploration and exploitation. Aiming to improve the solution diversity, a subset partition method for producing perturbation term is considered. In order to enhance the exploitation of the algorithm, an independent-inheriting-search strategy is used in the onlooker stage. Experiment results tested on multiple benchmark functions show that the proposed method is effective, and has good performance. The comparison experimental results illustrate that the proposed algorithm has good solution quality and convergence characteristics. •A modified ABC algorithm is proposed for global optimization problems.•The global and subset-best guided terms are applied in the modified-neighborhood-based update operator in employed bee stage.•The exploration and exploitation are balanced and adjusted with a variable factor.•A proposed independent-inheriting-search strategy is used in the onlooker stage to improve the convergence speed.•Multiple numerical experiments are conducted to verify the proposed algorithm.
AbstractList Artificial bee colony (ABC) is a novel swarm intelligence optimization algorithm that has been shown to be effective in solving high dimensional global optimization problem with good performance for its excellent exploration capability. It has received a great deal of attentions of researchers since it was proposed, and was employed to many application fields for its advantages of excellent global optimization ability and easy to implement. However, the basic ABC has some drawbacks like poor exploitation and slow convergence. In this paper, an improved artificial bee colony algorithm based on modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization called MNIIABC algorithm is proposed. In the proposed algorithm, a modified-neighborhood-based update operator, which contains a global-best term and a subset-best guided term, is applied in the employed bee stage to balance the exploration and exploitation. Aiming to improve the solution diversity, a subset partition method for producing perturbation term is considered. In order to enhance the exploitation of the algorithm, an independent-inheriting-search strategy is used in the onlooker stage. Experiment results tested on multiple benchmark functions show that the proposed method is effective, and has good performance. The comparison experimental results illustrate that the proposed algorithm has good solution quality and convergence characteristics. •A modified ABC algorithm is proposed for global optimization problems.•The global and subset-best guided terms are applied in the modified-neighborhood-based update operator in employed bee stage.•The exploration and exploitation are balanced and adjusted with a variable factor.•A proposed independent-inheriting-search strategy is used in the onlooker stage to improve the convergence speed.•Multiple numerical experiments are conducted to verify the proposed algorithm.
Author Zhong, Shouming
Li, Hui
Zhong, Fuli
Author_xml – sequence: 1
  givenname: Fuli
  surname: Zhong
  fullname: Zhong, Fuli
  email: zhongfulicn@163.com
  organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, PR China
– sequence: 2
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, PR China
– sequence: 3
  givenname: Shouming
  surname: Zhong
  fullname: Zhong, Shouming
  organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, PR China
BookMark eNqFUMuO1DAQtNAiMbvwC8g_4GBPJp5E4sBqxUtaiQucrbbdSXqU2JFtFg0_w6_iYeHCZfvQrZaqqqvrml2FGJCx10o2Sir95tRgmGDbgJp93RulGim7Z2yn-mMr9FEPV2wnh24v1HDUL9h1zicpZdsf9I79ug2c1i3FB_QcUqGRHMHCLSJ3cYnhzGGZYqIyr_xH7XyNvoLQi4A0zTamOUYvLOQq8H3zUJDHDROUmDgEzyl43LC2UASFGasUhUlkhORmnktF4nTmY4VPS7T1dtwKrfQTCsXwkj0fYcn46u-8Yd8-vP9690ncf_n4-e72XrhWyyJs34HtnNeXcu6AsvPWWevGQWF_7DRaZWULLeq-249QAXbE9uCg73o7uPaGvX3UdSnmnHA0jsofB9UgLUZJcwnbnMy_sM0lbKOUqWFXuv6PviVaIZ2fJr57JGJ97oEwmewIg0NPCV0xPtJTEr8Bi8enHA
CitedBy_id crossref_primary_10_1016_j_knosys_2021_106792
crossref_primary_10_1061_JLEED9_EYENG_5853
crossref_primary_10_1016_j_engappai_2018_12_002
crossref_primary_10_1109_TII_2019_2936371
crossref_primary_10_1038_s41598_023_44770_8
crossref_primary_10_1155_2018_6040561
crossref_primary_10_3233_JIFS_179587
crossref_primary_10_1007_s13369_018_3064_y
crossref_primary_10_1016_j_asoc_2017_10_040
crossref_primary_10_1002_cepa_1555
crossref_primary_10_1016_j_simpat_2018_06_004
crossref_primary_10_1049_rpg2_12471
crossref_primary_10_1016_j_asoc_2017_08_021
crossref_primary_10_1007_s11276_019_02227_9
crossref_primary_10_1109_ACCESS_2019_2904679
crossref_primary_10_1007_s00500_020_04863_2
crossref_primary_10_1016_j_engappai_2017_10_024
crossref_primary_10_1007_s11042_020_09639_2
crossref_primary_10_1155_2021_7480599
crossref_primary_10_1016_j_asoc_2018_06_013
crossref_primary_10_1109_ACCESS_2019_2899743
crossref_primary_10_1016_j_asoc_2019_106053
crossref_primary_10_1007_s11771_019_4142_3
crossref_primary_10_3390_app9132630
crossref_primary_10_1080_15567036_2025_2548357
Cites_doi 10.1016/j.amc.2013.04.001
10.1016/j.asoc.2011.05.039
10.1016/S1874-1029(14)60010-0
10.3139/120.110823
10.1016/j.trd.2014.05.015
10.1016/j.trb.2014.05.008
10.1016/j.asoc.2012.12.006
10.1016/j.amc.2012.09.052
10.1016/j.asoc.2011.08.040
10.1016/j.compstruc.2012.10.017
10.1016/j.engappai.2012.05.014
10.1016/j.asoc.2013.07.009
10.1016/j.simpat.2012.11.002
10.3139/120.110819
10.1016/j.cor.2012.12.006
10.1016/j.ins.2010.07.015
10.1016/j.dsp.2012.09.015
10.1016/j.neucom.2012.02.047
10.1016/j.patrec.2009.11.018
10.3139/120.110346
10.1016/j.amc.2009.03.090
10.1016/j.engappai.2010.01.020
10.1016/j.amc.2010.08.049
10.1016/S0020-0190(02)00447-7
10.1016/j.cam.2012.01.013
10.1016/j.energy.2014.03.059
10.1109/ICNN.1995.488968
10.1177/1063293X06063314
10.1109/NAFIPS.1996.534790
10.1016/j.advengsoft.2012.05.003
10.1016/j.cor.2011.06.007
10.1016/j.engappai.2014.07.012
10.1016/j.apm.2013.07.038
10.1016/j.asoc.2012.04.013
10.1109/TEVC.2008.2009457
10.1109/79.543973
10.1016/j.dsp.2013.10.019
10.1016/B978-008045157-2/50081-X
10.1016/j.ins.2013.09.015
10.1023/A:1008202821328
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2016.11.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 156
ExternalDocumentID 10_1016_j_engappai_2016_11_005
S095219761630207X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c360t-b85ab5cd66666cc4e05dbcbbcf91e8756eb1b03a3e6852fa4e0bfe34ca858b9c3
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392684200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 21:04:25 EST 2025
Sat Nov 29 02:17:56 EST 2025
Fri Feb 23 02:28:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Swarm intelligence
Artificial bee colony
Biological-inspired optimization algorithm
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-b85ab5cd66666cc4e05dbcbbcf91e8756eb1b03a3e6852fa4e0bfe34ca858b9c3
PageCount 23
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2016_11_005
crossref_primary_10_1016_j_engappai_2016_11_005
elsevier_sciencedirect_doi_10_1016_j_engappai_2016_11_005
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Akay, Karaboga (bib2) 2012; 192
Kiani, Yildiz (bib20) 2015
Yildiz (bib41) 2013; 26
Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M., 2005. The Bees Algorithm-A Novel Tool for Complex Optimization Problems, Manufacturing Engineering Centre, Cardiff University, Cardiff CF24 3AA, UK.
Tsai (bib36) 2014; 258
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4. pp. 1942–1948.
Xu, Duan (bib39) 2010; 31
Öztürk, Yildiz, Kaya, Öztürk (bib26) 2006; 14
Yildiz (bib40) 2013; 13
Duan, Zhang, Xu (bib10) 2011
Karaboga, Latifoglu (bib17) 2013; 23
Chen, Sarosh, Dong (bib7) 2012; 219
Li, Pan, Tasgetiren (bib22) 2014; 38
Gao, Liu (bib12) 2012; 39
Bäck, Fogel, Michalewicz (bib3) 1997
Xiang, An (bib38) 2013; 40
Biswas, Chatterjee, Goswami (bib5) 2013; 13
Ahirwal, Kumar, Singh (bib1) 2014; 25
Das, Abraham, Chakraborty, Konar (bib9) 2009; 13
Storn, R., Price, K., 1995. Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. In: Technical Report TR-95-012 (1995), International Computer Science Institute, Berkeley.
Yildiz, Lekesiz, Yildiz (bib43) 2016; 58
Gökdaǧ, Yildiz (bib13) 2012; 54
Szeto, Jiang (bib33) 2014; 67
Holland (bib14) 1992
Zhang, Lee, Choy, Ho, Ip (bib45) 2014; 31
Sun, Lus, Betti (bib32) 2013; 116
Karaboga, D., 2005. An idea based on honey bee swarm for numerical optimization. Erciyes University, Kayseri, Turkey, Technical Report-TR06.
Karaboga, Akay (bib16) 2009; 214
Imanian, Shiri, Moradi (bib15) 2014; 36
Yildiz, Kurtuluş, Demirci, Yildiz, Karagöz (bib42) 2016; 58
Tang, Man, Kwong, He (bib34) 1996; 13
Trelea (bib35) 2003; 85
Gao, Liu, Huang (bib11) 2012; 236
Sabat, Udgata, Abraham (bib29) 2010; 23
Chang (bib6) 2013; 31
Price, K.V., 1996. Differential evolution: a fast and simple numerical optimizer. In: Proceedings of Biennial Conference of the North American Fuzzy Information Processing Society, Berkeley, CA. pp. 524–527.
Zhao, Yang, Liu (bib46) 2013
Li, Niu, Xiao (bib21) 2012; 12
Luo, Wang, Xiao (bib23) 2013; 219
Zhang, Tang, Guan (bib44) 2014; 40
Zhu, Kwong (bib47) 2010; 217
Storn, Price (bib30) 1997; 11
Moeini, Afshar (bib25) 2012; 51
Ma, Liang, Guo, Fan, Yin (bib24) 2011; 11
Das, Biswas, Kundu (bib8) 2013; 13
Uzlu, Akpınar, Özturk, Nacar, Kankal (bib37) 2014; 69
Banharnsakun, Sirinaovakul, Achalakul (bib4) 2013; 116
Ahirwal (10.1016/j.engappai.2016.11.005_bib1) 2014; 25
Holland (10.1016/j.engappai.2016.11.005_bib14) 1992
Li (10.1016/j.engappai.2016.11.005_bib22) 2014; 38
Banharnsakun (10.1016/j.engappai.2016.11.005_bib4) 2013; 116
10.1016/j.engappai.2016.11.005_bib31
Akay (10.1016/j.engappai.2016.11.005_bib2) 2012; 192
Zhao (10.1016/j.engappai.2016.11.005_bib46) 2013
Karaboga (10.1016/j.engappai.2016.11.005_bib16) 2009; 214
Yildiz (10.1016/j.engappai.2016.11.005_bib42) 2016; 58
Bäck (10.1016/j.engappai.2016.11.005_bib3) 1997
Zhu (10.1016/j.engappai.2016.11.005_bib47) 2010; 217
Yildiz (10.1016/j.engappai.2016.11.005_bib41) 2013; 26
Gökdaǧ (10.1016/j.engappai.2016.11.005_bib13) 2012; 54
Zhang (10.1016/j.engappai.2016.11.005_bib44) 2014; 40
Zhang (10.1016/j.engappai.2016.11.005_bib45) 2014; 31
Imanian (10.1016/j.engappai.2016.11.005_bib15) 2014; 36
Yildiz (10.1016/j.engappai.2016.11.005_bib40) 2013; 13
Kiani (10.1016/j.engappai.2016.11.005_bib20) 2015
Luo (10.1016/j.engappai.2016.11.005_bib23) 2013; 219
Xiang (10.1016/j.engappai.2016.11.005_bib38) 2013; 40
Gao (10.1016/j.engappai.2016.11.005_bib11) 2012; 236
Li (10.1016/j.engappai.2016.11.005_bib21) 2012; 12
Storn (10.1016/j.engappai.2016.11.005_bib30) 1997; 11
10.1016/j.engappai.2016.11.005_bib19
Xu (10.1016/j.engappai.2016.11.005_bib39) 2010; 31
10.1016/j.engappai.2016.11.005_bib18
Uzlu (10.1016/j.engappai.2016.11.005_bib37) 2014; 69
Duan (10.1016/j.engappai.2016.11.005_bib10) 2011
Moeini (10.1016/j.engappai.2016.11.005_bib25) 2012; 51
Öztürk (10.1016/j.engappai.2016.11.005_bib26) 2006; 14
Yildiz (10.1016/j.engappai.2016.11.005_bib43) 2016; 58
Tsai (10.1016/j.engappai.2016.11.005_bib36) 2014; 258
Sun (10.1016/j.engappai.2016.11.005_bib32) 2013; 116
Ma (10.1016/j.engappai.2016.11.005_bib24) 2011; 11
Szeto (10.1016/j.engappai.2016.11.005_bib33) 2014; 67
Sabat (10.1016/j.engappai.2016.11.005_bib29) 2010; 23
Trelea (10.1016/j.engappai.2016.11.005_bib35) 2003; 85
Das (10.1016/j.engappai.2016.11.005_bib8) 2013; 13
Chen (10.1016/j.engappai.2016.11.005_bib7) 2012; 219
Das (10.1016/j.engappai.2016.11.005_bib9) 2009; 13
Biswas (10.1016/j.engappai.2016.11.005_bib5) 2013; 13
Chang (10.1016/j.engappai.2016.11.005_bib6) 2013; 31
Gao (10.1016/j.engappai.2016.11.005_bib12) 2012; 39
Tang (10.1016/j.engappai.2016.11.005_bib34) 1996; 13
Karaboga (10.1016/j.engappai.2016.11.005_bib17) 2013; 23
10.1016/j.engappai.2016.11.005_bib28
10.1016/j.engappai.2016.11.005_bib27
References_xml – volume: 31
  start-page: 85
  year: 2014
  end-page: 99
  ident: bib45
  article-title: Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem
  publication-title: Transp. Res. Part D: Transp. Environ.
– volume: 31
  start-page: 1759
  year: 2010
  end-page: 1772
  ident: bib39
  article-title: Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft
  publication-title: Pattern Recognit. Lett.
– volume: 39
  start-page: 687
  year: 2012
  end-page: 697
  ident: bib12
  article-title: A modified artificial bee colony algorithm
  publication-title: Comput. Oper. Res.
– volume: 40
  start-page: 973
  year: 2014
  end-page: 979
  ident: bib44
  article-title: Optimum desirgn of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm
  publication-title: Acta Autom. Sin.
– volume: 219
  start-page: 3575
  year: 2012
  end-page: 3589
  ident: bib7
  article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization
  publication-title: Appl. Math. Comput.
– volume: 12
  start-page: 320
  year: 2012
  end-page: 332
  ident: bib21
  article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Soft Comput.
– volume: 36
  start-page: 148
  year: 2014
  end-page: 163
  ident: bib15
  article-title: Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4. pp. 1942–1948.
– start-page: 1
  year: 2015
  end-page: 12
  ident: bib20
  article-title: A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization
  publication-title: Arch. Comput. Methods Eng.
– reference: Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M., 2005. The Bees Algorithm-A Novel Tool for Complex Optimization Problems, Manufacturing Engineering Centre, Cardiff University, Cardiff CF24 3AA, UK.
– volume: 13
  start-page: 2906
  year: 2013
  end-page: 2912
  ident: bib40
  article-title: A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 1051
  year: 2013
  end-page: 1058
  ident: bib17
  article-title: Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony - ABC-algorithm
  publication-title: Digit. Signal Process.
– volume: 69
  start-page: 638
  year: 2014
  end-page: 647
  ident: bib37
  article-title: Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey
  publication-title: Energy
– volume: 258
  start-page: 80
  year: 2014
  end-page: 93
  ident: bib36
  article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems
  publication-title: Inf. Sci.
– volume: 38
  start-page: 1111
  year: 2014
  end-page: 1132
  ident: bib22
  article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
  publication-title: Appl. Math. Model.
– volume: 25
  start-page: 164
  year: 2014
  end-page: 172
  ident: bib1
  article-title: Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm
  publication-title: Digit. Signal Process.
– volume: 116
  start-page: 355
  year: 2013
  end-page: 366
  ident: bib4
  article-title: The best-so-far ABC with multiple patrilines for clustering problems
  publication-title: Neurocomputing
– volume: 31
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib6
  article-title: Nonlinear CSTR control system design using an artificial bee colony algorithm
  publication-title: Simul. Model. Pract. Theory
– volume: 54
  start-page: 416
  year: 2012
  end-page: 420
  ident: bib13
  article-title: Structural damage detection using modal parameters and particle swarm optimization
  publication-title: Mater. Test.
– volume: 40
  start-page: 1256
  year: 2013
  end-page: 1265
  ident: bib38
  article-title: An efficient and robust artificial bee colony algorithm for numerical optimization
  publication-title: Comput. Oper. Res.
– volume: 13
  start-page: 22
  year: 1996
  end-page: 37
  ident: bib34
  article-title: Genetic algorithms and their applications
  publication-title: IEEE Signal Process. Mag.
– volume: 14
  start-page: 5
  year: 2006
  end-page: 16
  ident: bib26
  article-title: Neuro-genetic design optimization framework to support the integrated robust design optimization process in CE
  publication-title: Concurr. Eng.: Res. Appl.
– volume: 58
  start-page: 75
  year: 2016
  end-page: 78
  ident: bib42
  article-title: Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm
  publication-title: Mater. Test.
– volume: 13
  start-page: 4676
  year: 2013
  end-page: 4694
  ident: bib8
  article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 5205
  year: 2011
  end-page: 5214
  ident: bib24
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
– start-page: 88
  year: 2011
  end-page: 106
  ident: bib10
  article-title: Bio-Inspired-Computing
– volume: 219
  start-page: 10253
  year: 2013
  end-page: 10262
  ident: bib23
  article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization
  publication-title: Appl. Math. Comput.
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: bib16
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 58
  start-page: 79
  year: 2016
  end-page: 81
  ident: bib43
  article-title: Structural design of vehicle components using gravitational search and charged system search algorithms
  publication-title: Mater. Test.
– volume: 13
  start-page: 2343
  year: 2013
  end-page: 2355
  ident: bib5
  article-title: An artificial bee colony-least square algorithm for solving harmonic estimation problems
  publication-title: Appl. Soft Comput.
– volume: 116
  start-page: 59
  year: 2013
  end-page: 74
  ident: bib32
  article-title: Identification of structural models using a modified artificial bee colony algorithm
  publication-title: Comput. Struct.
– volume: 85
  start-page: 317
  year: 2003
  end-page: 325
  ident: bib35
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Inf. Process. Lett.
– reference: Storn, R., Price, K., 1995. Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. In: Technical Report TR-95-012 (1995), International Computer Science Institute, Berkeley.
– reference: Karaboga, D., 2005. An idea based on honey bee swarm for numerical optimization. Erciyes University, Kayseri, Turkey, Technical Report-TR06.
– volume: 13
  start-page: 526
  year: 2009
  end-page: 553
  ident: bib9
  article-title: Differential evolution using a neighborhood-based mutation operator
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 51
  start-page: 49
  year: 2012
  end-page: 62
  ident: bib25
  article-title: Layout and size optimization of sanitary sewer network using intelligent ants
  publication-title: Adv. Eng. Softw.
– volume: 23
  start-page: 689
  year: 2010
  end-page: 694
  ident: bib29
  article-title: Artificial bee colony algorithm for small signal model parameter extraction of MESFET
  publication-title: Eng. Appl. Artif. Intell.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib30
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– year: 1997
  ident: bib3
  article-title: Handbook of Evolutionary Computation
– volume: 236
  start-page: 2741
  year: 2012
  end-page: 2753
  ident: bib11
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
– year: 1992
  ident: bib14
  article-title: Adaptation in Natural and Artificial Systems
– volume: 67
  start-page: 235
  year: 2014
  end-page: 263
  ident: bib33
  article-title: Transit route and frequency design
  publication-title: Transp. Res. Part B: Methodol.
– volume: 217
  start-page: 3166
  year: 2010
  end-page: 3173
  ident: bib47
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– reference: Price, K.V., 1996. Differential evolution: a fast and simple numerical optimizer. In: Proceedings of Biennial Conference of the North American Fuzzy Information Processing Society, Berkeley, CA. pp. 524–527.
– volume: 26
  start-page: 327
  year: 2013
  end-page: 333
  ident: bib41
  article-title: Comparison of evolutionary-based optimization algorithms for structural design optimization
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 220
  year: 2013
  end-page: 239
  ident: bib46
  article-title: New Metaheuristic Optimization Methods
– volume: 192
  start-page: 120
  year: 2012
  end-page: 142
  ident: bib2
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inf. Sci.
– volume: 219
  start-page: 10253
  issue: 20
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib23
  article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.04.001
– volume: 11
  start-page: 5205
  issue: 8
  year: 2011
  ident: 10.1016/j.engappai.2016.11.005_bib24
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.05.039
– volume: 40
  start-page: 973
  issue: 5
  year: 2014
  ident: 10.1016/j.engappai.2016.11.005_bib44
  article-title: Optimum desirgn of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm
  publication-title: Acta Autom. Sin.
  doi: 10.1016/S1874-1029(14)60010-0
– volume: 58
  start-page: 75
  issue: 1
  year: 2016
  ident: 10.1016/j.engappai.2016.11.005_bib42
  article-title: Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm
  publication-title: Mater. Test.
  doi: 10.3139/120.110823
– volume: 31
  start-page: 85
  year: 2014
  ident: 10.1016/j.engappai.2016.11.005_bib45
  article-title: Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem
  publication-title: Transp. Res. Part D: Transp. Environ.
  doi: 10.1016/j.trd.2014.05.015
– volume: 67
  start-page: 235
  year: 2014
  ident: 10.1016/j.engappai.2016.11.005_bib33
  article-title: Transit route and frequency design
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2014.05.008
– volume: 13
  start-page: 2343
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib5
  article-title: An artificial bee colony-least square algorithm for solving harmonic estimation problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.12.006
– volume: 219
  start-page: 3575
  issue: 8
  year: 2012
  ident: 10.1016/j.engappai.2016.11.005_bib7
  article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.09.052
– volume: 12
  start-page: 320
  issue: 1
  year: 2012
  ident: 10.1016/j.engappai.2016.11.005_bib21
  article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.08.040
– ident: 10.1016/j.engappai.2016.11.005_bib18
– volume: 116
  start-page: 59
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib32
  article-title: Identification of structural models using a modified artificial bee colony algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.10.017
– volume: 26
  start-page: 327
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib41
  article-title: Comparison of evolutionary-based optimization algorithms for structural design optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.05.014
– volume: 13
  start-page: 4676
  issue: 12
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib8
  article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.07.009
– year: 1997
  ident: 10.1016/j.engappai.2016.11.005_bib3
– volume: 31
  start-page: 1
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib6
  article-title: Nonlinear CSTR control system design using an artificial bee colony algorithm
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2012.11.002
– volume: 58
  start-page: 79
  issue: 1
  year: 2016
  ident: 10.1016/j.engappai.2016.11.005_bib43
  article-title: Structural design of vehicle components using gravitational search and charged system search algorithms
  publication-title: Mater. Test.
  doi: 10.3139/120.110819
– volume: 40
  start-page: 1256
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib38
  article-title: An efficient and robust artificial bee colony algorithm for numerical optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.12.006
– volume: 192
  start-page: 120
  year: 2012
  ident: 10.1016/j.engappai.2016.11.005_bib2
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.07.015
– volume: 23
  start-page: 1051
  issue: 3
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib17
  article-title: Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony - ABC-algorithm
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2012.09.015
– volume: 116
  start-page: 355
  issue: 20
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib4
  article-title: The best-so-far ABC with multiple patrilines for clustering problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.047
– volume: 31
  start-page: 1759
  year: 2010
  ident: 10.1016/j.engappai.2016.11.005_bib39
  article-title: Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.11.018
– volume: 54
  start-page: 416
  issue: 6
  year: 2012
  ident: 10.1016/j.engappai.2016.11.005_bib13
  article-title: Structural damage detection using modal parameters and particle swarm optimization
  publication-title: Mater. Test.
  doi: 10.3139/120.110346
– volume: 214
  start-page: 108
  year: 2009
  ident: 10.1016/j.engappai.2016.11.005_bib16
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.03.090
– year: 1992
  ident: 10.1016/j.engappai.2016.11.005_bib14
– start-page: 220
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib46
– volume: 23
  start-page: 689
  issue: 5
  year: 2010
  ident: 10.1016/j.engappai.2016.11.005_bib29
  article-title: Artificial bee colony algorithm for small signal model parameter extraction of MESFET
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.01.020
– volume: 217
  start-page: 3166
  issue: 7
  year: 2010
  ident: 10.1016/j.engappai.2016.11.005_bib47
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.08.049
– ident: 10.1016/j.engappai.2016.11.005_bib31
– volume: 85
  start-page: 317
  year: 2003
  ident: 10.1016/j.engappai.2016.11.005_bib35
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(02)00447-7
– volume: 236
  start-page: 2741
  issue: 11
  year: 2012
  ident: 10.1016/j.engappai.2016.11.005_bib11
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.01.013
– volume: 69
  start-page: 638
  year: 2014
  ident: 10.1016/j.engappai.2016.11.005_bib37
  article-title: Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey
  publication-title: Energy
  doi: 10.1016/j.energy.2014.03.059
– ident: 10.1016/j.engappai.2016.11.005_bib19
  doi: 10.1109/ICNN.1995.488968
– volume: 14
  start-page: 5
  issue: 1
  year: 2006
  ident: 10.1016/j.engappai.2016.11.005_bib26
  article-title: Neuro-genetic design optimization framework to support the integrated robust design optimization process in CE
  publication-title: Concurr. Eng.: Res. Appl.
  doi: 10.1177/1063293X06063314
– ident: 10.1016/j.engappai.2016.11.005_bib28
  doi: 10.1109/NAFIPS.1996.534790
– start-page: 1
  year: 2015
  ident: 10.1016/j.engappai.2016.11.005_bib20
  article-title: A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization
  publication-title: Arch. Comput. Methods Eng.
– volume: 51
  start-page: 49
  year: 2012
  ident: 10.1016/j.engappai.2016.11.005_bib25
  article-title: Layout and size optimization of sanitary sewer network using intelligent ants
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2012.05.003
– volume: 39
  start-page: 687
  issue: 3
  year: 2012
  ident: 10.1016/j.engappai.2016.11.005_bib12
  article-title: A modified artificial bee colony algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.06.007
– volume: 36
  start-page: 148
  year: 2014
  ident: 10.1016/j.engappai.2016.11.005_bib15
  article-title: Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.07.012
– volume: 38
  start-page: 1111
  issue: 3
  year: 2014
  ident: 10.1016/j.engappai.2016.11.005_bib22
  article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.07.038
– volume: 13
  start-page: 2906
  year: 2013
  ident: 10.1016/j.engappai.2016.11.005_bib40
  article-title: A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.04.013
– start-page: 88
  year: 2011
  ident: 10.1016/j.engappai.2016.11.005_bib10
– volume: 13
  start-page: 526
  issue: 3
  year: 2009
  ident: 10.1016/j.engappai.2016.11.005_bib9
  article-title: Differential evolution using a neighborhood-based mutation operator
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2008.2009457
– volume: 13
  start-page: 22
  year: 1996
  ident: 10.1016/j.engappai.2016.11.005_bib34
  article-title: Genetic algorithms and their applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543973
– volume: 25
  start-page: 164
  year: 2014
  ident: 10.1016/j.engappai.2016.11.005_bib1
  article-title: Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.10.019
– ident: 10.1016/j.engappai.2016.11.005_bib27
  doi: 10.1016/B978-008045157-2/50081-X
– volume: 258
  start-page: 80
  year: 2014
  ident: 10.1016/j.engappai.2016.11.005_bib36
  article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.09.015
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.engappai.2016.11.005_bib30
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
SSID ssj0003846
Score 2.319562
Snippet Artificial bee colony (ABC) is a novel swarm intelligence optimization algorithm that has been shown to be effective in solving high dimensional global...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Artificial bee colony
Biological-inspired optimization algorithm
Optimization
Swarm intelligence
Title An improved artificial bee colony algorithm with modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization
URI https://dx.doi.org/10.1016/j.engappai.2016.11.005
Volume 58
WOSCitedRecordID wos000392684200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqjgdeuCPGAPmBt8ojaeLUeazQECA0ITGkvkXxbcvUOlWbVvs3_CD-1I5rOwls6tgDfYgq13YTnS8-F5_zGaH3GZNZSrmE91txkmqqCdN8TDKwXkGdRDxRO57Zb5PTUzab5d8Hg9-hFmY7nxjDrq7y5X8VNbSBsG3p7D3E3U4KDfAdhA5XEDtc_0nwU2NLH1f1FkxJ-7OniODK5qXPwdkflfPzelU1FwsXhV3UEjopSYwNkwImLNMxsepNjjZLGxEY1Uu12473XE3h5NyGVMbWD9rUaeLjJ2tHd-vyQD3dSA3r0sIXfP6xFdCRIY76O-m75ITu1qsebWgX6Pa5xOBDV21WkTuCe1Pd6PXjot4sgpb2QQ5QnFGbMBKilWMS5-6omLBwO853v_LGPibqlHjs2Mpv6AcXqrg8VuYcHqusbG5fdmxpXCPaacSQBfCXomzTF0Nm3GUR5insPOBNFTs-3YPxBJA-RAfTLyezr61hkDBXNxaepVewfvsd3W4r9eyfsyfokXdc8NQB7ikaKPMMPfZODPYqYg1N4ZyQ0PYc_ZoaHCCJO7ligCR2kMQtJLGFJN4DSewgiQMkMUAS74UkDpDEAEnsIIn7kHyBfn46Ofv4mfiDQYhIsqghnNGSUyEz-xEiVRGVXHAudB4rcMAzMEB4lJSJyhgd6xI6cK2SVJSMMp6L5CUamtqoVwiLSUKTlOlUqjjVpeYq1kwKJmhecibEIaJBBIXwrPn28JZ5sR8Eh-hDO27peGPuHJEHCRfe-nVWbQHgvWPs63v_2xF62L1nb9CwWW3UW_RAbJtqvXrnkXsN8ZXjyg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+artificial+bee+colony+algorithm+with+modified-neighborhood-based+update+operator+and+independent-inheriting-search+strategy+for+global+optimization&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Zhong%2C+Fuli&rft.au=Li%2C+Hui&rft.au=Zhong%2C+Shouming&rft.date=2017-02-01&rft.issn=0952-1976&rft.volume=58&rft.spage=134&rft.epage=156&rft_id=info:doi/10.1016%2Fj.engappai.2016.11.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2016_11_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon