An improved artificial bee colony algorithm with modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization
Artificial bee colony (ABC) is a novel swarm intelligence optimization algorithm that has been shown to be effective in solving high dimensional global optimization problem with good performance for its excellent exploration capability. It has received a great deal of attentions of researchers since...
Uložené v:
| Vydané v: | Engineering applications of artificial intelligence Ročník 58; s. 134 - 156 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.02.2017
|
| Predmet: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Artificial bee colony (ABC) is a novel swarm intelligence optimization algorithm that has been shown to be effective in solving high dimensional global optimization problem with good performance for its excellent exploration capability. It has received a great deal of attentions of researchers since it was proposed, and was employed to many application fields for its advantages of excellent global optimization ability and easy to implement. However, the basic ABC has some drawbacks like poor exploitation and slow convergence. In this paper, an improved artificial bee colony algorithm based on modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization called MNIIABC algorithm is proposed. In the proposed algorithm, a modified-neighborhood-based update operator, which contains a global-best term and a subset-best guided term, is applied in the employed bee stage to balance the exploration and exploitation. Aiming to improve the solution diversity, a subset partition method for producing perturbation term is considered. In order to enhance the exploitation of the algorithm, an independent-inheriting-search strategy is used in the onlooker stage. Experiment results tested on multiple benchmark functions show that the proposed method is effective, and has good performance. The comparison experimental results illustrate that the proposed algorithm has good solution quality and convergence characteristics.
•A modified ABC algorithm is proposed for global optimization problems.•The global and subset-best guided terms are applied in the modified-neighborhood-based update operator in employed bee stage.•The exploration and exploitation are balanced and adjusted with a variable factor.•A proposed independent-inheriting-search strategy is used in the onlooker stage to improve the convergence speed.•Multiple numerical experiments are conducted to verify the proposed algorithm. |
|---|---|
| AbstractList | Artificial bee colony (ABC) is a novel swarm intelligence optimization algorithm that has been shown to be effective in solving high dimensional global optimization problem with good performance for its excellent exploration capability. It has received a great deal of attentions of researchers since it was proposed, and was employed to many application fields for its advantages of excellent global optimization ability and easy to implement. However, the basic ABC has some drawbacks like poor exploitation and slow convergence. In this paper, an improved artificial bee colony algorithm based on modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization called MNIIABC algorithm is proposed. In the proposed algorithm, a modified-neighborhood-based update operator, which contains a global-best term and a subset-best guided term, is applied in the employed bee stage to balance the exploration and exploitation. Aiming to improve the solution diversity, a subset partition method for producing perturbation term is considered. In order to enhance the exploitation of the algorithm, an independent-inheriting-search strategy is used in the onlooker stage. Experiment results tested on multiple benchmark functions show that the proposed method is effective, and has good performance. The comparison experimental results illustrate that the proposed algorithm has good solution quality and convergence characteristics.
•A modified ABC algorithm is proposed for global optimization problems.•The global and subset-best guided terms are applied in the modified-neighborhood-based update operator in employed bee stage.•The exploration and exploitation are balanced and adjusted with a variable factor.•A proposed independent-inheriting-search strategy is used in the onlooker stage to improve the convergence speed.•Multiple numerical experiments are conducted to verify the proposed algorithm. |
| Author | Zhong, Shouming Li, Hui Zhong, Fuli |
| Author_xml | – sequence: 1 givenname: Fuli surname: Zhong fullname: Zhong, Fuli email: zhongfulicn@163.com organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, PR China – sequence: 2 givenname: Hui surname: Li fullname: Li, Hui organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, PR China – sequence: 3 givenname: Shouming surname: Zhong fullname: Zhong, Shouming organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, PR China |
| BookMark | eNqFUMuO1DAQtNAiMbvwC8g_4GBPJp5E4sBqxUtaiQucrbbdSXqU2JFtFg0_w6_iYeHCZfvQrZaqqqvrml2FGJCx10o2Sir95tRgmGDbgJp93RulGim7Z2yn-mMr9FEPV2wnh24v1HDUL9h1zicpZdsf9I79ug2c1i3FB_QcUqGRHMHCLSJ3cYnhzGGZYqIyr_xH7XyNvoLQi4A0zTamOUYvLOQq8H3zUJDHDROUmDgEzyl43LC2UASFGasUhUlkhORmnktF4nTmY4VPS7T1dtwKrfQTCsXwkj0fYcn46u-8Yd8-vP9690ncf_n4-e72XrhWyyJs34HtnNeXcu6AsvPWWevGQWF_7DRaZWULLeq-249QAXbE9uCg73o7uPaGvX3UdSnmnHA0jsofB9UgLUZJcwnbnMy_sM0lbKOUqWFXuv6PviVaIZ2fJr57JGJ97oEwmewIg0NPCV0xPtJTEr8Bi8enHA |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2021_106792 crossref_primary_10_1061_JLEED9_EYENG_5853 crossref_primary_10_1016_j_engappai_2018_12_002 crossref_primary_10_1109_TII_2019_2936371 crossref_primary_10_1038_s41598_023_44770_8 crossref_primary_10_1155_2018_6040561 crossref_primary_10_3233_JIFS_179587 crossref_primary_10_1007_s13369_018_3064_y crossref_primary_10_1016_j_asoc_2017_10_040 crossref_primary_10_1002_cepa_1555 crossref_primary_10_1016_j_simpat_2018_06_004 crossref_primary_10_1049_rpg2_12471 crossref_primary_10_1016_j_asoc_2017_08_021 crossref_primary_10_1007_s11276_019_02227_9 crossref_primary_10_1109_ACCESS_2019_2904679 crossref_primary_10_1007_s00500_020_04863_2 crossref_primary_10_1016_j_engappai_2017_10_024 crossref_primary_10_1007_s11042_020_09639_2 crossref_primary_10_1155_2021_7480599 crossref_primary_10_1016_j_asoc_2018_06_013 crossref_primary_10_1109_ACCESS_2019_2899743 crossref_primary_10_1016_j_asoc_2019_106053 crossref_primary_10_1007_s11771_019_4142_3 crossref_primary_10_3390_app9132630 crossref_primary_10_1080_15567036_2025_2548357 |
| Cites_doi | 10.1016/j.amc.2013.04.001 10.1016/j.asoc.2011.05.039 10.1016/S1874-1029(14)60010-0 10.3139/120.110823 10.1016/j.trd.2014.05.015 10.1016/j.trb.2014.05.008 10.1016/j.asoc.2012.12.006 10.1016/j.amc.2012.09.052 10.1016/j.asoc.2011.08.040 10.1016/j.compstruc.2012.10.017 10.1016/j.engappai.2012.05.014 10.1016/j.asoc.2013.07.009 10.1016/j.simpat.2012.11.002 10.3139/120.110819 10.1016/j.cor.2012.12.006 10.1016/j.ins.2010.07.015 10.1016/j.dsp.2012.09.015 10.1016/j.neucom.2012.02.047 10.1016/j.patrec.2009.11.018 10.3139/120.110346 10.1016/j.amc.2009.03.090 10.1016/j.engappai.2010.01.020 10.1016/j.amc.2010.08.049 10.1016/S0020-0190(02)00447-7 10.1016/j.cam.2012.01.013 10.1016/j.energy.2014.03.059 10.1109/ICNN.1995.488968 10.1177/1063293X06063314 10.1109/NAFIPS.1996.534790 10.1016/j.advengsoft.2012.05.003 10.1016/j.cor.2011.06.007 10.1016/j.engappai.2014.07.012 10.1016/j.apm.2013.07.038 10.1016/j.asoc.2012.04.013 10.1109/TEVC.2008.2009457 10.1109/79.543973 10.1016/j.dsp.2013.10.019 10.1016/B978-008045157-2/50081-X 10.1016/j.ins.2013.09.015 10.1023/A:1008202821328 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2016.11.005 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| EndPage | 156 |
| ExternalDocumentID | 10_1016_j_engappai_2016_11_005 S095219761630207X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c360t-b85ab5cd66666cc4e05dbcbbcf91e8756eb1b03a3e6852fa4e0bfe34ca858b9c3 |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392684200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 21:04:25 EST 2025 Sat Nov 29 02:17:56 EST 2025 Fri Feb 23 02:28:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Swarm intelligence Artificial bee colony Biological-inspired optimization algorithm Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c360t-b85ab5cd66666cc4e05dbcbbcf91e8756eb1b03a3e6852fa4e0bfe34ca858b9c3 |
| PageCount | 23 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2016_11_005 crossref_primary_10_1016_j_engappai_2016_11_005 elsevier_sciencedirect_doi_10_1016_j_engappai_2016_11_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-01 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Akay, Karaboga (bib2) 2012; 192 Kiani, Yildiz (bib20) 2015 Yildiz (bib41) 2013; 26 Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M., 2005. The Bees Algorithm-A Novel Tool for Complex Optimization Problems, Manufacturing Engineering Centre, Cardiff University, Cardiff CF24 3AA, UK. Tsai (bib36) 2014; 258 Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4. pp. 1942–1948. Xu, Duan (bib39) 2010; 31 Öztürk, Yildiz, Kaya, Öztürk (bib26) 2006; 14 Yildiz (bib40) 2013; 13 Duan, Zhang, Xu (bib10) 2011 Karaboga, Latifoglu (bib17) 2013; 23 Chen, Sarosh, Dong (bib7) 2012; 219 Li, Pan, Tasgetiren (bib22) 2014; 38 Gao, Liu (bib12) 2012; 39 Bäck, Fogel, Michalewicz (bib3) 1997 Xiang, An (bib38) 2013; 40 Biswas, Chatterjee, Goswami (bib5) 2013; 13 Ahirwal, Kumar, Singh (bib1) 2014; 25 Das, Abraham, Chakraborty, Konar (bib9) 2009; 13 Storn, R., Price, K., 1995. Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. In: Technical Report TR-95-012 (1995), International Computer Science Institute, Berkeley. Yildiz, Lekesiz, Yildiz (bib43) 2016; 58 Gökdaǧ, Yildiz (bib13) 2012; 54 Szeto, Jiang (bib33) 2014; 67 Holland (bib14) 1992 Zhang, Lee, Choy, Ho, Ip (bib45) 2014; 31 Sun, Lus, Betti (bib32) 2013; 116 Karaboga, D., 2005. An idea based on honey bee swarm for numerical optimization. Erciyes University, Kayseri, Turkey, Technical Report-TR06. Karaboga, Akay (bib16) 2009; 214 Imanian, Shiri, Moradi (bib15) 2014; 36 Yildiz, Kurtuluş, Demirci, Yildiz, Karagöz (bib42) 2016; 58 Tang, Man, Kwong, He (bib34) 1996; 13 Trelea (bib35) 2003; 85 Gao, Liu, Huang (bib11) 2012; 236 Sabat, Udgata, Abraham (bib29) 2010; 23 Chang (bib6) 2013; 31 Price, K.V., 1996. Differential evolution: a fast and simple numerical optimizer. In: Proceedings of Biennial Conference of the North American Fuzzy Information Processing Society, Berkeley, CA. pp. 524–527. Zhao, Yang, Liu (bib46) 2013 Li, Niu, Xiao (bib21) 2012; 12 Luo, Wang, Xiao (bib23) 2013; 219 Zhang, Tang, Guan (bib44) 2014; 40 Zhu, Kwong (bib47) 2010; 217 Storn, Price (bib30) 1997; 11 Moeini, Afshar (bib25) 2012; 51 Ma, Liang, Guo, Fan, Yin (bib24) 2011; 11 Das, Biswas, Kundu (bib8) 2013; 13 Uzlu, Akpınar, Özturk, Nacar, Kankal (bib37) 2014; 69 Banharnsakun, Sirinaovakul, Achalakul (bib4) 2013; 116 Ahirwal (10.1016/j.engappai.2016.11.005_bib1) 2014; 25 Holland (10.1016/j.engappai.2016.11.005_bib14) 1992 Li (10.1016/j.engappai.2016.11.005_bib22) 2014; 38 Banharnsakun (10.1016/j.engappai.2016.11.005_bib4) 2013; 116 10.1016/j.engappai.2016.11.005_bib31 Akay (10.1016/j.engappai.2016.11.005_bib2) 2012; 192 Zhao (10.1016/j.engappai.2016.11.005_bib46) 2013 Karaboga (10.1016/j.engappai.2016.11.005_bib16) 2009; 214 Yildiz (10.1016/j.engappai.2016.11.005_bib42) 2016; 58 Bäck (10.1016/j.engappai.2016.11.005_bib3) 1997 Zhu (10.1016/j.engappai.2016.11.005_bib47) 2010; 217 Yildiz (10.1016/j.engappai.2016.11.005_bib41) 2013; 26 Gökdaǧ (10.1016/j.engappai.2016.11.005_bib13) 2012; 54 Zhang (10.1016/j.engappai.2016.11.005_bib44) 2014; 40 Zhang (10.1016/j.engappai.2016.11.005_bib45) 2014; 31 Imanian (10.1016/j.engappai.2016.11.005_bib15) 2014; 36 Yildiz (10.1016/j.engappai.2016.11.005_bib40) 2013; 13 Kiani (10.1016/j.engappai.2016.11.005_bib20) 2015 Luo (10.1016/j.engappai.2016.11.005_bib23) 2013; 219 Xiang (10.1016/j.engappai.2016.11.005_bib38) 2013; 40 Gao (10.1016/j.engappai.2016.11.005_bib11) 2012; 236 Li (10.1016/j.engappai.2016.11.005_bib21) 2012; 12 Storn (10.1016/j.engappai.2016.11.005_bib30) 1997; 11 10.1016/j.engappai.2016.11.005_bib19 Xu (10.1016/j.engappai.2016.11.005_bib39) 2010; 31 10.1016/j.engappai.2016.11.005_bib18 Uzlu (10.1016/j.engappai.2016.11.005_bib37) 2014; 69 Duan (10.1016/j.engappai.2016.11.005_bib10) 2011 Moeini (10.1016/j.engappai.2016.11.005_bib25) 2012; 51 Öztürk (10.1016/j.engappai.2016.11.005_bib26) 2006; 14 Yildiz (10.1016/j.engappai.2016.11.005_bib43) 2016; 58 Tsai (10.1016/j.engappai.2016.11.005_bib36) 2014; 258 Sun (10.1016/j.engappai.2016.11.005_bib32) 2013; 116 Ma (10.1016/j.engappai.2016.11.005_bib24) 2011; 11 Szeto (10.1016/j.engappai.2016.11.005_bib33) 2014; 67 Sabat (10.1016/j.engappai.2016.11.005_bib29) 2010; 23 Trelea (10.1016/j.engappai.2016.11.005_bib35) 2003; 85 Das (10.1016/j.engappai.2016.11.005_bib8) 2013; 13 Chen (10.1016/j.engappai.2016.11.005_bib7) 2012; 219 Das (10.1016/j.engappai.2016.11.005_bib9) 2009; 13 Biswas (10.1016/j.engappai.2016.11.005_bib5) 2013; 13 Chang (10.1016/j.engappai.2016.11.005_bib6) 2013; 31 Gao (10.1016/j.engappai.2016.11.005_bib12) 2012; 39 Tang (10.1016/j.engappai.2016.11.005_bib34) 1996; 13 Karaboga (10.1016/j.engappai.2016.11.005_bib17) 2013; 23 10.1016/j.engappai.2016.11.005_bib28 10.1016/j.engappai.2016.11.005_bib27 |
| References_xml | – volume: 31 start-page: 85 year: 2014 end-page: 99 ident: bib45 article-title: Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem publication-title: Transp. Res. Part D: Transp. Environ. – volume: 31 start-page: 1759 year: 2010 end-page: 1772 ident: bib39 article-title: Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft publication-title: Pattern Recognit. Lett. – volume: 39 start-page: 687 year: 2012 end-page: 697 ident: bib12 article-title: A modified artificial bee colony algorithm publication-title: Comput. Oper. Res. – volume: 40 start-page: 973 year: 2014 end-page: 979 ident: bib44 article-title: Optimum desirgn of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm publication-title: Acta Autom. Sin. – volume: 219 start-page: 3575 year: 2012 end-page: 3589 ident: bib7 article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization publication-title: Appl. Math. Comput. – volume: 12 start-page: 320 year: 2012 end-page: 332 ident: bib21 article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization publication-title: Appl. Soft Comput. – volume: 36 start-page: 148 year: 2014 end-page: 163 ident: bib15 article-title: Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems publication-title: Eng. Appl. Artif. Intell. – reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4. pp. 1942–1948. – start-page: 1 year: 2015 end-page: 12 ident: bib20 article-title: A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization publication-title: Arch. Comput. Methods Eng. – reference: Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M., 2005. The Bees Algorithm-A Novel Tool for Complex Optimization Problems, Manufacturing Engineering Centre, Cardiff University, Cardiff CF24 3AA, UK. – volume: 13 start-page: 2906 year: 2013 end-page: 2912 ident: bib40 article-title: A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing publication-title: Appl. Soft Comput. – volume: 23 start-page: 1051 year: 2013 end-page: 1058 ident: bib17 article-title: Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony - ABC-algorithm publication-title: Digit. Signal Process. – volume: 69 start-page: 638 year: 2014 end-page: 647 ident: bib37 article-title: Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey publication-title: Energy – volume: 258 start-page: 80 year: 2014 end-page: 93 ident: bib36 article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems publication-title: Inf. Sci. – volume: 38 start-page: 1111 year: 2014 end-page: 1132 ident: bib22 article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities publication-title: Appl. Math. Model. – volume: 25 start-page: 164 year: 2014 end-page: 172 ident: bib1 article-title: Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm publication-title: Digit. Signal Process. – volume: 116 start-page: 355 year: 2013 end-page: 366 ident: bib4 article-title: The best-so-far ABC with multiple patrilines for clustering problems publication-title: Neurocomputing – volume: 31 start-page: 1 year: 2013 end-page: 9 ident: bib6 article-title: Nonlinear CSTR control system design using an artificial bee colony algorithm publication-title: Simul. Model. Pract. Theory – volume: 54 start-page: 416 year: 2012 end-page: 420 ident: bib13 article-title: Structural damage detection using modal parameters and particle swarm optimization publication-title: Mater. Test. – volume: 40 start-page: 1256 year: 2013 end-page: 1265 ident: bib38 article-title: An efficient and robust artificial bee colony algorithm for numerical optimization publication-title: Comput. Oper. Res. – volume: 13 start-page: 22 year: 1996 end-page: 37 ident: bib34 article-title: Genetic algorithms and their applications publication-title: IEEE Signal Process. Mag. – volume: 14 start-page: 5 year: 2006 end-page: 16 ident: bib26 article-title: Neuro-genetic design optimization framework to support the integrated robust design optimization process in CE publication-title: Concurr. Eng.: Res. Appl. – volume: 58 start-page: 75 year: 2016 end-page: 78 ident: bib42 article-title: Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm publication-title: Mater. Test. – volume: 13 start-page: 4676 year: 2013 end-page: 4694 ident: bib8 article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization publication-title: Appl. Soft Comput. – volume: 11 start-page: 5205 year: 2011 end-page: 5214 ident: bib24 article-title: SAR image segmentation based on artificial bee colony algorithm publication-title: Appl. Soft Comput. – start-page: 88 year: 2011 end-page: 106 ident: bib10 article-title: Bio-Inspired-Computing – volume: 219 start-page: 10253 year: 2013 end-page: 10262 ident: bib23 article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization publication-title: Appl. Math. Comput. – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: bib16 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. – volume: 58 start-page: 79 year: 2016 end-page: 81 ident: bib43 article-title: Structural design of vehicle components using gravitational search and charged system search algorithms publication-title: Mater. Test. – volume: 13 start-page: 2343 year: 2013 end-page: 2355 ident: bib5 article-title: An artificial bee colony-least square algorithm for solving harmonic estimation problems publication-title: Appl. Soft Comput. – volume: 116 start-page: 59 year: 2013 end-page: 74 ident: bib32 article-title: Identification of structural models using a modified artificial bee colony algorithm publication-title: Comput. Struct. – volume: 85 start-page: 317 year: 2003 end-page: 325 ident: bib35 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Inf. Process. Lett. – reference: Storn, R., Price, K., 1995. Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. In: Technical Report TR-95-012 (1995), International Computer Science Institute, Berkeley. – reference: Karaboga, D., 2005. An idea based on honey bee swarm for numerical optimization. Erciyes University, Kayseri, Turkey, Technical Report-TR06. – volume: 13 start-page: 526 year: 2009 end-page: 553 ident: bib9 article-title: Differential evolution using a neighborhood-based mutation operator publication-title: IEEE Trans. Evolut. Comput. – volume: 51 start-page: 49 year: 2012 end-page: 62 ident: bib25 article-title: Layout and size optimization of sanitary sewer network using intelligent ants publication-title: Adv. Eng. Softw. – volume: 23 start-page: 689 year: 2010 end-page: 694 ident: bib29 article-title: Artificial bee colony algorithm for small signal model parameter extraction of MESFET publication-title: Eng. Appl. Artif. Intell. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib30 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – year: 1997 ident: bib3 article-title: Handbook of Evolutionary Computation – volume: 236 start-page: 2741 year: 2012 end-page: 2753 ident: bib11 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. – year: 1992 ident: bib14 article-title: Adaptation in Natural and Artificial Systems – volume: 67 start-page: 235 year: 2014 end-page: 263 ident: bib33 article-title: Transit route and frequency design publication-title: Transp. Res. Part B: Methodol. – volume: 217 start-page: 3166 year: 2010 end-page: 3173 ident: bib47 article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization publication-title: Appl. Math. Comput. – reference: Price, K.V., 1996. Differential evolution: a fast and simple numerical optimizer. In: Proceedings of Biennial Conference of the North American Fuzzy Information Processing Society, Berkeley, CA. pp. 524–527. – volume: 26 start-page: 327 year: 2013 end-page: 333 ident: bib41 article-title: Comparison of evolutionary-based optimization algorithms for structural design optimization publication-title: Eng. Appl. Artif. Intell. – start-page: 220 year: 2013 end-page: 239 ident: bib46 article-title: New Metaheuristic Optimization Methods – volume: 192 start-page: 120 year: 2012 end-page: 142 ident: bib2 article-title: A modified artificial bee colony algorithm for real-parameter optimization publication-title: Inf. Sci. – volume: 219 start-page: 10253 issue: 20 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib23 article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.04.001 – volume: 11 start-page: 5205 issue: 8 year: 2011 ident: 10.1016/j.engappai.2016.11.005_bib24 article-title: SAR image segmentation based on artificial bee colony algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.05.039 – volume: 40 start-page: 973 issue: 5 year: 2014 ident: 10.1016/j.engappai.2016.11.005_bib44 article-title: Optimum desirgn of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm publication-title: Acta Autom. Sin. doi: 10.1016/S1874-1029(14)60010-0 – volume: 58 start-page: 75 issue: 1 year: 2016 ident: 10.1016/j.engappai.2016.11.005_bib42 article-title: Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm publication-title: Mater. Test. doi: 10.3139/120.110823 – volume: 31 start-page: 85 year: 2014 ident: 10.1016/j.engappai.2016.11.005_bib45 article-title: Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem publication-title: Transp. Res. Part D: Transp. Environ. doi: 10.1016/j.trd.2014.05.015 – volume: 67 start-page: 235 year: 2014 ident: 10.1016/j.engappai.2016.11.005_bib33 article-title: Transit route and frequency design publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2014.05.008 – volume: 13 start-page: 2343 issue: 5 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib5 article-title: An artificial bee colony-least square algorithm for solving harmonic estimation problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.12.006 – volume: 219 start-page: 3575 issue: 8 year: 2012 ident: 10.1016/j.engappai.2016.11.005_bib7 article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.09.052 – volume: 12 start-page: 320 issue: 1 year: 2012 ident: 10.1016/j.engappai.2016.11.005_bib21 article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.08.040 – ident: 10.1016/j.engappai.2016.11.005_bib18 – volume: 116 start-page: 59 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib32 article-title: Identification of structural models using a modified artificial bee colony algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.10.017 – volume: 26 start-page: 327 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib41 article-title: Comparison of evolutionary-based optimization algorithms for structural design optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.05.014 – volume: 13 start-page: 4676 issue: 12 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib8 article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.07.009 – year: 1997 ident: 10.1016/j.engappai.2016.11.005_bib3 – volume: 31 start-page: 1 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib6 article-title: Nonlinear CSTR control system design using an artificial bee colony algorithm publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2012.11.002 – volume: 58 start-page: 79 issue: 1 year: 2016 ident: 10.1016/j.engappai.2016.11.005_bib43 article-title: Structural design of vehicle components using gravitational search and charged system search algorithms publication-title: Mater. Test. doi: 10.3139/120.110819 – volume: 40 start-page: 1256 issue: 5 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib38 article-title: An efficient and robust artificial bee colony algorithm for numerical optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.12.006 – volume: 192 start-page: 120 year: 2012 ident: 10.1016/j.engappai.2016.11.005_bib2 article-title: A modified artificial bee colony algorithm for real-parameter optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.07.015 – volume: 23 start-page: 1051 issue: 3 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib17 article-title: Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony - ABC-algorithm publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2012.09.015 – volume: 116 start-page: 355 issue: 20 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib4 article-title: The best-so-far ABC with multiple patrilines for clustering problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.047 – volume: 31 start-page: 1759 year: 2010 ident: 10.1016/j.engappai.2016.11.005_bib39 article-title: Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.11.018 – volume: 54 start-page: 416 issue: 6 year: 2012 ident: 10.1016/j.engappai.2016.11.005_bib13 article-title: Structural damage detection using modal parameters and particle swarm optimization publication-title: Mater. Test. doi: 10.3139/120.110346 – volume: 214 start-page: 108 year: 2009 ident: 10.1016/j.engappai.2016.11.005_bib16 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.03.090 – year: 1992 ident: 10.1016/j.engappai.2016.11.005_bib14 – start-page: 220 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib46 – volume: 23 start-page: 689 issue: 5 year: 2010 ident: 10.1016/j.engappai.2016.11.005_bib29 article-title: Artificial bee colony algorithm for small signal model parameter extraction of MESFET publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.01.020 – volume: 217 start-page: 3166 issue: 7 year: 2010 ident: 10.1016/j.engappai.2016.11.005_bib47 article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.08.049 – ident: 10.1016/j.engappai.2016.11.005_bib31 – volume: 85 start-page: 317 year: 2003 ident: 10.1016/j.engappai.2016.11.005_bib35 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Inf. Process. Lett. doi: 10.1016/S0020-0190(02)00447-7 – volume: 236 start-page: 2741 issue: 11 year: 2012 ident: 10.1016/j.engappai.2016.11.005_bib11 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.01.013 – volume: 69 start-page: 638 year: 2014 ident: 10.1016/j.engappai.2016.11.005_bib37 article-title: Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey publication-title: Energy doi: 10.1016/j.energy.2014.03.059 – ident: 10.1016/j.engappai.2016.11.005_bib19 doi: 10.1109/ICNN.1995.488968 – volume: 14 start-page: 5 issue: 1 year: 2006 ident: 10.1016/j.engappai.2016.11.005_bib26 article-title: Neuro-genetic design optimization framework to support the integrated robust design optimization process in CE publication-title: Concurr. Eng.: Res. Appl. doi: 10.1177/1063293X06063314 – ident: 10.1016/j.engappai.2016.11.005_bib28 doi: 10.1109/NAFIPS.1996.534790 – start-page: 1 year: 2015 ident: 10.1016/j.engappai.2016.11.005_bib20 article-title: A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization publication-title: Arch. Comput. Methods Eng. – volume: 51 start-page: 49 year: 2012 ident: 10.1016/j.engappai.2016.11.005_bib25 article-title: Layout and size optimization of sanitary sewer network using intelligent ants publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2012.05.003 – volume: 39 start-page: 687 issue: 3 year: 2012 ident: 10.1016/j.engappai.2016.11.005_bib12 article-title: A modified artificial bee colony algorithm publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.06.007 – volume: 36 start-page: 148 year: 2014 ident: 10.1016/j.engappai.2016.11.005_bib15 article-title: Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.07.012 – volume: 38 start-page: 1111 issue: 3 year: 2014 ident: 10.1016/j.engappai.2016.11.005_bib22 article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.07.038 – volume: 13 start-page: 2906 year: 2013 ident: 10.1016/j.engappai.2016.11.005_bib40 article-title: A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.04.013 – start-page: 88 year: 2011 ident: 10.1016/j.engappai.2016.11.005_bib10 – volume: 13 start-page: 526 issue: 3 year: 2009 ident: 10.1016/j.engappai.2016.11.005_bib9 article-title: Differential evolution using a neighborhood-based mutation operator publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2008.2009457 – volume: 13 start-page: 22 year: 1996 ident: 10.1016/j.engappai.2016.11.005_bib34 article-title: Genetic algorithms and their applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543973 – volume: 25 start-page: 164 year: 2014 ident: 10.1016/j.engappai.2016.11.005_bib1 article-title: Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2013.10.019 – ident: 10.1016/j.engappai.2016.11.005_bib27 doi: 10.1016/B978-008045157-2/50081-X – volume: 258 start-page: 80 year: 2014 ident: 10.1016/j.engappai.2016.11.005_bib36 article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.09.015 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.engappai.2016.11.005_bib30 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 |
| SSID | ssj0003846 |
| Score | 2.319562 |
| Snippet | Artificial bee colony (ABC) is a novel swarm intelligence optimization algorithm that has been shown to be effective in solving high dimensional global... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 134 |
| SubjectTerms | Artificial bee colony Biological-inspired optimization algorithm Optimization Swarm intelligence |
| Title | An improved artificial bee colony algorithm with modified-neighborhood-based update operator and independent-inheriting-search strategy for global optimization |
| URI | https://dx.doi.org/10.1016/j.engappai.2016.11.005 |
| Volume | 58 |
| WOSCitedRecordID | wos000392684200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqjgdeuCPGAPmBt8ojaeLUeazQECA0ITGkvkXxbcvUOlWbVvs3_CD-1I5rOwls6tgDfYgq13YTnS8-F5_zGaH3GZNZSrmE91txkmqqCdN8TDKwXkGdRDxRO57Zb5PTUzab5d8Hg9-hFmY7nxjDrq7y5X8VNbSBsG3p7D3E3U4KDfAdhA5XEDtc_0nwU2NLH1f1FkxJ-7OniODK5qXPwdkflfPzelU1FwsXhV3UEjopSYwNkwImLNMxsepNjjZLGxEY1Uu12473XE3h5NyGVMbWD9rUaeLjJ2tHd-vyQD3dSA3r0sIXfP6xFdCRIY76O-m75ITu1qsebWgX6Pa5xOBDV21WkTuCe1Pd6PXjot4sgpb2QQ5QnFGbMBKilWMS5-6omLBwO853v_LGPibqlHjs2Mpv6AcXqrg8VuYcHqusbG5fdmxpXCPaacSQBfCXomzTF0Nm3GUR5insPOBNFTs-3YPxBJA-RAfTLyezr61hkDBXNxaepVewfvsd3W4r9eyfsyfokXdc8NQB7ikaKPMMPfZODPYqYg1N4ZyQ0PYc_ZoaHCCJO7ligCR2kMQtJLGFJN4DSewgiQMkMUAS74UkDpDEAEnsIIn7kHyBfn46Ofv4mfiDQYhIsqghnNGSUyEz-xEiVRGVXHAudB4rcMAzMEB4lJSJyhgd6xI6cK2SVJSMMp6L5CUamtqoVwiLSUKTlOlUqjjVpeYq1kwKJmhecibEIaJBBIXwrPn28JZ5sR8Eh-hDO27peGPuHJEHCRfe-nVWbQHgvWPs63v_2xF62L1nb9CwWW3UW_RAbJtqvXrnkXsN8ZXjyg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+artificial+bee+colony+algorithm+with+modified-neighborhood-based+update+operator+and+independent-inheriting-search+strategy+for+global+optimization&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Zhong%2C+Fuli&rft.au=Li%2C+Hui&rft.au=Zhong%2C+Shouming&rft.date=2017-02-01&rft.issn=0952-1976&rft.volume=58&rft.spage=134&rft.epage=156&rft_id=info:doi/10.1016%2Fj.engappai.2016.11.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2016_11_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |