Exact and efficient evaluation of the InCircle predicate for parametric ellipses and smooth convex objects
We study the Voronoi diagram, under the Euclidean metric, of a set of ellipses, given in parametric representation. The article concentrates on the InCircle predicate, which is the hardest to compute, and describes an exact and complete solution. It consists of a customized subdivision-based method...
Gespeichert in:
| Veröffentlicht in: | Computer aided design Jg. 40; H. 6; S. 691 - 700 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.06.2008
|
| Schlagworte: | |
| ISSN: | 0010-4485, 1879-2685 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study the Voronoi diagram, under the Euclidean metric, of a set of ellipses, given in parametric representation. The article concentrates on the
InCircle predicate, which is the hardest to compute, and describes an exact and complete solution. It consists of a customized subdivision-based method that achieves quadratic convergence, leading to a real-time implementation for non-degenerate inputs. Degenerate cases are handled using exact algebraic computation. We conclude with experiments showing that most instances run in less than 0.1 s, on a 2.6 GHz Pentium-4, whereas degenerate cases may take up to 13 s. Our approach readily generalizes to smooth convex objects. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0010-4485 1879-2685 |
| DOI: | 10.1016/j.cad.2008.05.001 |