Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder

Most Remaining Useful Life (RUL) prognostics are obtained using supervised learning models trained with many labelled data samples (i.e., the true RUL is known). In aviation, however, aircraft systems are often preventively replaced before failure. There are thus very few labelled data samples avail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence Jg. 117; S. 105582
Hauptverfasser: de Pater, Ingeborg, Mitici, Mihaela
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2023
Schlagworte:
ISSN:0952-1976, 1873-6769
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!