Self-Taught Anomaly Detection With Hybrid Unsupervised/Supervised Machine Learning in Optical Networks
This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM ena...
Uložené v:
| Vydané v: | Journal of lightwave technology Ročník 37; číslo 7; s. 1742 - 1749 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0733-8724, 1558-2213 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to <inline-formula><tex-math notation="LaTeX">99\%</tex-math></inline-formula> anomaly detection accuracy can be achieved with a false positive rate below <inline-formula><tex-math notation="LaTeX">1\%</tex-math></inline-formula> . |
|---|---|
| AbstractList | This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to [Formula Omitted] anomaly detection accuracy can be achieved with a false positive rate below [Formula Omitted] . This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to <inline-formula><tex-math notation="LaTeX">99\%</tex-math></inline-formula> anomaly detection accuracy can be achieved with a false positive rate below <inline-formula><tex-math notation="LaTeX">1\%</tex-math></inline-formula> . Here this paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to 99% anomaly detection accuracy can be achieved with a false positive rate below 1%. |
| Author | Chen, Xiaoliang Proietti, Roberto Yoo, S. J. Ben Li, Baojia Zhu, Zuqing |
| Author_xml | – sequence: 1 givenname: Xiaoliang orcidid: 0000-0002-7805-6237 surname: Chen fullname: Chen, Xiaoliang email: xlichen@ucdavis.edu organization: Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA, USA – sequence: 2 givenname: Baojia surname: Li fullname: Li, Baojia email: libaojia@mail.ustc.edu.cn organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Roberto surname: Proietti fullname: Proietti, Roberto email: rproietti@ucdavis.edu organization: Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA, USA – sequence: 4 givenname: Zuqing orcidid: 0000-0002-4251-788X surname: Zhu fullname: Zhu, Zuqing email: zqzhu@ieee.org organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 5 givenname: S. J. Ben surname: Yoo fullname: Yoo, S. J. Ben email: sbyoo@ucdavis.edu organization: Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA, USA |
| BackLink | https://www.osti.gov/servlets/purl/1612677$$D View this record in Osti.gov |
| BookMark | eNp9kL9vGyEYhlGVSnXc7JW6oHY-hx8Hx41RmsapnGSwrY6Iw9_ZpBdwATfyfx8sWxk6RAwfw_PC9z7n6MwHDwh9oWRCKWkvf80WE0ZoO2EtYbVqPqARFUJVjFF-hkak4bxSDas_ofOUngihdYFGqJ_D0FcLs1tvMr7y4dkMe_wDMtjsgse_Xd7g6b6LboWXPu22EP-5BKvL-dsV3xu7cR7wDEz0zq-x8_hxm501A36A_BLin_QZfezNkODiNMdo-fNmcT2tZo-3d9dXs8pySXKl2p4As20vRMdWsuubWhrbSW46Q4zgsmc1gCk9OmIMUyuurKBNI4ngtKM1H6Nvx3dDyk4n60qRjQ3elz6aSspk0xTo-xHaxvB3Bynrp7CLvuylGSOct0ooWihypGwMKUXo9Ta6ZxP3mhJ9UK6Lcn1Qrk_KS0T-FykLmIPIHI0b3gt-PQYdALz9o6Qop-WvpZyQSw |
| CODEN | JLTEDG |
| CitedBy_id | crossref_primary_10_1016_j_ijepes_2025_110718 crossref_primary_10_1038_s41598_021_02583_7 crossref_primary_10_1109_LCOMM_2021_3055064 crossref_primary_10_1109_TNSM_2020_3039938 crossref_primary_10_1364_JOCN_502937 crossref_primary_10_1364_JOCN_527874 crossref_primary_10_1109_JLT_2022_3160101 crossref_primary_10_1109_JLT_2022_3172523 crossref_primary_10_1364_JOCN_402884 crossref_primary_10_1007_s11432_022_3557_9 crossref_primary_10_1109_JLT_2020_2987032 crossref_primary_10_1109_JSTQE_2022_3156157 crossref_primary_10_1364_JOCN_12_00A113 crossref_primary_10_1109_ACCESS_2025_3577968 crossref_primary_10_2478_amns_2024_2222 crossref_primary_10_1109_JLT_2022_3168594 crossref_primary_10_1364_JOCN_423667 crossref_primary_10_1109_JLT_2020_3034135 crossref_primary_10_1515_nanoph_2021_0578 crossref_primary_10_1109_ACCESS_2021_3111092 crossref_primary_10_1007_s11432_020_2874_y crossref_primary_10_1109_JLT_2022_3227719 crossref_primary_10_1364_JOCN_482932 crossref_primary_10_1109_ACCESS_2024_3404866 crossref_primary_10_1109_JLT_2019_2922586 crossref_primary_10_1364_JOCN_457687 crossref_primary_10_1109_ACCESS_2024_3498704 crossref_primary_10_1109_JLT_2020_3003905 crossref_primary_10_1109_JSTQE_2022_3151878 crossref_primary_10_1007_s10489_020_02075_7 crossref_primary_10_1109_JLT_2021_3134098 crossref_primary_10_4218_etrij_2021_0182 crossref_primary_10_1515_joc_2022_0216 crossref_primary_10_3390_electronics12030601 crossref_primary_10_1016_j_jnca_2020_102576 crossref_primary_10_1109_JLT_2019_2923558 crossref_primary_10_1109_TNSM_2022_3198139 crossref_primary_10_1364_JOCN_409817 crossref_primary_10_1109_JLT_2020_2989153 crossref_primary_10_1109_ACCESS_2021_3083060 crossref_primary_10_3390_s24082636 crossref_primary_10_1364_JOCN_12_000A18 crossref_primary_10_1145_3530812 crossref_primary_10_1049_2024_8821891 crossref_primary_10_1109_JLT_2021_3055850 crossref_primary_10_1364_JOCN_439801 crossref_primary_10_1364_JOCN_484577 crossref_primary_10_1109_JLT_2020_3007491 crossref_primary_10_1109_JLT_2021_3125974 crossref_primary_10_1109_JLT_2022_3150362 crossref_primary_10_3390_ai6070131 crossref_primary_10_1109_JLT_2019_2947562 crossref_primary_10_1109_JSAC_2021_3064657 |
| Cites_doi | 10.1109/ECOC.2018.8535155 10.1109/MNET.2004.1276610 10.1364/OFC.2018.Th4D.7 10.1109/JLT.2018.2795345 10.1109/TKDE.2010.235 10.1364/JOCN.10.000162 10.1364/JOCN.9.0000A9 10.1109/COMST.2018.2880039 10.1364/JOCN.5.000836 10.1364/OFC.2018.M3A.5 10.1109/COMST.2014.2336610 10.1109/JLT.2013.2296781 10.1109/JSAC.2005.852182 10.1109/MCOM.2006.248169 10.1109/JLT.2017.2747223 10.1364/OFC.2019.M2A.2 10.2307/2346830 10.1109/JLT.2013.2294389 10.1109/JLT.2017.2660540 10.1109/MNET.2015.7293303 10.1364/JOCN.10.000A27 10.1364/JOCN.11.0000A1 10.1364/JOCN.10.000D29 10.1109/ECOC.2018.8535185 10.1109/INFOCOM.2014.6847918 10.1364/JOCN.10.000344 10.1364/OFC.2018.W4F.2 10.1109/JLT.2015.2456152 10.1109/JLT.2018.2864676 10.1109/MCOM.2018.1701191 10.1109/JLT.2015.2456052 10.1109/JLT.2017.2781540 10.1109/JLT.2012.2227683 10.1109/ECOC.2017.8346218 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| CorporateAuthor | Univ. of California, Davis, CA (United States) |
| CorporateAuthor_xml | – name: Univ. of California, Davis, CA (United States) |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M OIOZB OTOTI |
| DOI | 10.1109/JLT.2019.2902487 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics Engineering |
| EISSN | 1558-2213 |
| EndPage | 1749 |
| ExternalDocumentID | 1612677 10_1109_JLT_2019_2902487 8656569 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: U.S. Department of Energy grantid: DE-SC0016700 funderid: 10.13039/100000015 – fundername: National Science Foundation ICE-T:RC grantid: 1836921 |
| GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION 7SP 7U5 8FD H8D L7M RIG OIOZB OTOTI ROP |
| ID | FETCH-LOGICAL-c360t-89f0e2c9f55b2d6bf746acb63aba0a536f24eea872b0aa28d38c517760531b143 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464133000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0733-8724 |
| IngestDate | Mon Feb 26 05:26:08 EST 2024 Mon Jun 30 10:19:31 EDT 2025 Sat Nov 29 02:11:21 EST 2025 Tue Nov 18 22:33:11 EST 2025 Wed Aug 27 02:44:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-89f0e2c9f55b2d6bf746acb63aba0a536f24eea872b0aa28d38c517760531b143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC) National Science Foundation (NSF) SC0016700; ICE-T:RC 1836921 |
| ORCID | 0000-0002-7805-6237 0000-0002-4251-788X 0000000278056237 000000024251788X |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1612677 |
| PQID | 2203398581 |
| PQPubID | 85485 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_JLT_2019_2902487 proquest_journals_2203398581 ieee_primary_8656569 osti_scitechconnect_1612677 crossref_citationtrail_10_1109_JLT_2019_2902487 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of lightwave technology |
| PublicationTitleAbbrev | JLT |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ester (ref30) 0 pedregosa (ref33) 2011; 12 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref26 doi: 10.1109/ECOC.2018.8535155 – ident: ref1 doi: 10.1109/MNET.2004.1276610 – ident: ref35 doi: 10.1364/OFC.2018.Th4D.7 – ident: ref29 doi: 10.1109/JLT.2018.2795345 – ident: ref27 doi: 10.1109/TKDE.2010.235 – ident: ref32 doi: 10.1364/JOCN.10.000162 – ident: ref14 doi: 10.1364/JOCN.9.0000A9 – ident: ref15 doi: 10.1109/COMST.2018.2880039 – ident: ref8 doi: 10.1364/JOCN.5.000836 – ident: ref24 doi: 10.1364/OFC.2018.M3A.5 – ident: ref31 doi: 10.1109/COMST.2014.2336610 – ident: ref13 doi: 10.1109/JLT.2013.2296781 – ident: ref3 doi: 10.1109/JSAC.2005.852182 – ident: ref4 doi: 10.1109/MCOM.2006.248169 – ident: ref22 doi: 10.1109/JLT.2017.2747223 – start-page: 226 year: 0 ident: ref30 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining – ident: ref36 doi: 10.1364/OFC.2019.M2A.2 – ident: ref34 doi: 10.2307/2346830 – ident: ref9 doi: 10.1109/JLT.2013.2294389 – ident: ref17 doi: 10.1109/JLT.2017.2660540 – ident: ref2 doi: 10.1109/MNET.2015.7293303 – ident: ref23 doi: 10.1364/JOCN.10.000A27 – ident: ref11 doi: 10.1364/JOCN.11.0000A1 – ident: ref19 doi: 10.1364/JOCN.10.000D29 – ident: ref28 doi: 10.1109/ECOC.2018.8535185 – ident: ref10 doi: 10.1109/INFOCOM.2014.6847918 – ident: ref7 doi: 10.1364/JOCN.10.000344 – ident: ref21 doi: 10.1364/OFC.2018.W4F.2 – ident: ref5 doi: 10.1109/JLT.2015.2456152 – ident: ref20 doi: 10.1109/JLT.2018.2864676 – ident: ref16 doi: 10.1109/MCOM.2018.1701191 – ident: ref6 doi: 10.1109/JLT.2015.2456052 – ident: ref25 doi: 10.1109/JLT.2017.2781540 – ident: ref12 doi: 10.1109/JLT.2012.2227683 – ident: ref18 doi: 10.1109/ECOC.2017.8346218 – volume: 12 start-page: 2825 year: 2011 ident: ref33 article-title: Scikit-learn: Machine learning in python publication-title: J Mach Learn Res |
| SSID | ssj0014487 |
| Score | 2.5822265 |
| Snippet | This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised... Here this paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and... |
| SourceID | osti proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1742 |
| SubjectTerms | Algorithms Anomalies Anomaly detection Artificial intelligence Artificial neural networks Clustering Clustering algorithms Cognition data clustering module Data clustering module (DCM) data regression and classification module data regression and classification module (DRCM) DCM DRCM ENGINEERING hybrid unsupervised and supervised machine learning Knowledge engineering Knowledge management Machine learning Modules Monitoring Optical communication Optical fiber networks Regression analysis self-taught anomaly detection |
| Title | Self-Taught Anomaly Detection With Hybrid Unsupervised/Supervised Machine Learning in Optical Networks |
| URI | https://ieeexplore.ieee.org/document/8656569 https://www.proquest.com/docview/2203398581 https://www.osti.gov/servlets/purl/1612677 |
| Volume | 37 |
| WOSCitedRecordID | wos000464133000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-2213 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014487 issn: 0733-8724 databaseCode: RIE dateStart: 19830101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7aouCL1VbxbJU8-CK4vb1kNz8eRS1F6in0in0LSXaiB-fe0d0T-t-bZHMLogg-bR6S3SVfZjKT-WYC8KqS1nnm60LWCouKoy8Us7OCWoOOStkIlxKFL8V8Lm9u1Jc9eDPmwiBiIp_hWWymWH6zdtt4VDaVPJofah_2heBDrtYYMQhuRkqNFowFCafVLiRZqunHy0XkcKkzqmIFL_HbFpTuVAmPdZCoP_Rx2mTOD__v9x7Bw2xMkrcD-o9hD9sjOMyGJcli2x3B_cTzdN0x-Ctc-WJhtsElJ8H1_2FWd-Q99omQ1ZKvy_47ubiLWVzkuu22m6hJOmymV2OTfEr0SyS5Mus3smzJ5006EifzgVTePYHr8w-LdxdFvmqhcIyXfSGVL5E65eva0oZbLypunOXMWFOamnFPK0QTJtaWxlDZMOnqWUAhyrANNtdTOGjXLT4DIlXpZdADhjtaCWZNI2oTqxJ6ayvR8AlMd7OvXa5DHq_DWOnkj5RKB7x0xEtnvCbwehyxGWpw_KPvcQRm7JcxmcBJBFgHsyLWxnWRROR6HcxdykUYdLrDXWcR7jSlJWNK1nL2_O_vPIEH8csDjecUDvrbLb6Ae-5nv-xuX6bV-Qso1uKB |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VFkQvLbRFhD7wgQsS22zsXT-OFVClkAakpqI3y_baEClsou6mUv89tuOshECVelof7JXlz2PPeL6ZAXhXcG0ccWXGS2GzglqXCaIHGdbKGsx5xUwMFB6x8Zjf3IjvG_Chi4Wx1kbymT0NzejLr-ZmGZ7K-pwG9UM8ga1QOStFa3U-A29oxOBoRoiXcVysnZK56H8ZTQKLS5xiEXJ4sb8uoVhVxX_mXqb-OZHjNXO--7gJvoCdpE6isxX-L2HD1nuwm1RLlAS32YNnkelpmn1wV3bmsolaeqMceeP_t5rdo0-2jZSsGv2Ytr_Q8D7EcaHrulkuwlnS2Kp_1TXRZSRgWpRys_5E0xp9W8RHcTRe0cqbA7g-_zz5OMxSsYXMEJq3GRcut9gIV5YaV1Q7VlBlNCVKq1yVhDpcWKv8wupcKcwrwk05YIwGKdZe63oFm_W8tq8BcZE77k8CRQ0uGNGqYqUKeQmd1gWraA_669WXJmUiDwUxZjJaJLmQHi8Z8JIJrx6870YsVlk4Hui7H4Dp-iVMenAYAJZesQjZcU2gEZlWeoUXU-YHHa1xl0mIG4lxTojgJR-8-f8_38Lz4eRyJEcX46-HsB1msSL1HMFme7u0x_DU3LXT5vYk7tQ_G9Hlyg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Taught+Anomaly+Detection+With+Hybrid+Unsupervised%2FSupervised+Machine+Learning+in+Optical+Networks&rft.jtitle=Journal+of+lightwave+technology&rft.au=Chen%2C+Xiaoliang&rft.au=Li%2C+Baojia&rft.au=Proietti%2C+Roberto&rft.au=Zhu%2C+Zuqing&rft.date=2019-04-01&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=37&rft.issue=7&rft.spage=1742&rft.epage=1749&rft_id=info:doi/10.1109%2FJLT.2019.2902487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2019_2902487 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |