Self-Taught Anomaly Detection With Hybrid Unsupervised/Supervised Machine Learning in Optical Networks

This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM ena...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of lightwave technology Ročník 37; číslo 7; s. 1742 - 1749
Hlavní autori: Chen, Xiaoliang, Li, Baojia, Proietti, Roberto, Zhu, Zuqing, Yoo, S. J. Ben
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0733-8724, 1558-2213
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to <inline-formula><tex-math notation="LaTeX">99\%</tex-math></inline-formula> anomaly detection accuracy can be achieved with a false positive rate below <inline-formula><tex-math notation="LaTeX">1\%</tex-math></inline-formula> .
AbstractList This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to [Formula Omitted] anomaly detection accuracy can be achieved with a false positive rate below [Formula Omitted] .
This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to <inline-formula><tex-math notation="LaTeX">99\%</tex-math></inline-formula> anomaly detection accuracy can be achieved with a false positive rate below <inline-formula><tex-math notation="LaTeX">1\%</tex-math></inline-formula> .
Here this paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to 99% anomaly detection accuracy can be achieved with a false positive rate below 1%.
Author Chen, Xiaoliang
Proietti, Roberto
Yoo, S. J. Ben
Li, Baojia
Zhu, Zuqing
Author_xml – sequence: 1
  givenname: Xiaoliang
  orcidid: 0000-0002-7805-6237
  surname: Chen
  fullname: Chen, Xiaoliang
  email: xlichen@ucdavis.edu
  organization: Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA, USA
– sequence: 2
  givenname: Baojia
  surname: Li
  fullname: Li, Baojia
  email: libaojia@mail.ustc.edu.cn
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Roberto
  surname: Proietti
  fullname: Proietti, Roberto
  email: rproietti@ucdavis.edu
  organization: Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA, USA
– sequence: 4
  givenname: Zuqing
  orcidid: 0000-0002-4251-788X
  surname: Zhu
  fullname: Zhu, Zuqing
  email: zqzhu@ieee.org
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 5
  givenname: S. J. Ben
  surname: Yoo
  fullname: Yoo, S. J. Ben
  email: sbyoo@ucdavis.edu
  organization: Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA, USA
BackLink https://www.osti.gov/servlets/purl/1612677$$D View this record in Osti.gov
BookMark eNp9kL9vGyEYhlGVSnXc7JW6oHY-hx8Hx41RmsapnGSwrY6Iw9_ZpBdwATfyfx8sWxk6RAwfw_PC9z7n6MwHDwh9oWRCKWkvf80WE0ZoO2EtYbVqPqARFUJVjFF-hkak4bxSDas_ofOUngihdYFGqJ_D0FcLs1tvMr7y4dkMe_wDMtjsgse_Xd7g6b6LboWXPu22EP-5BKvL-dsV3xu7cR7wDEz0zq-x8_hxm501A36A_BLin_QZfezNkODiNMdo-fNmcT2tZo-3d9dXs8pySXKl2p4As20vRMdWsuubWhrbSW46Q4zgsmc1gCk9OmIMUyuurKBNI4ngtKM1H6Nvx3dDyk4n60qRjQ3elz6aSspk0xTo-xHaxvB3Bynrp7CLvuylGSOct0ooWihypGwMKUXo9Ta6ZxP3mhJ9UK6Lcn1Qrk_KS0T-FykLmIPIHI0b3gt-PQYdALz9o6Qop-WvpZyQSw
CODEN JLTEDG
CitedBy_id crossref_primary_10_1016_j_ijepes_2025_110718
crossref_primary_10_1038_s41598_021_02583_7
crossref_primary_10_1109_LCOMM_2021_3055064
crossref_primary_10_1109_TNSM_2020_3039938
crossref_primary_10_1364_JOCN_502937
crossref_primary_10_1364_JOCN_527874
crossref_primary_10_1109_JLT_2022_3160101
crossref_primary_10_1109_JLT_2022_3172523
crossref_primary_10_1364_JOCN_402884
crossref_primary_10_1007_s11432_022_3557_9
crossref_primary_10_1109_JLT_2020_2987032
crossref_primary_10_1109_JSTQE_2022_3156157
crossref_primary_10_1364_JOCN_12_00A113
crossref_primary_10_1109_ACCESS_2025_3577968
crossref_primary_10_2478_amns_2024_2222
crossref_primary_10_1109_JLT_2022_3168594
crossref_primary_10_1364_JOCN_423667
crossref_primary_10_1109_JLT_2020_3034135
crossref_primary_10_1515_nanoph_2021_0578
crossref_primary_10_1109_ACCESS_2021_3111092
crossref_primary_10_1007_s11432_020_2874_y
crossref_primary_10_1109_JLT_2022_3227719
crossref_primary_10_1364_JOCN_482932
crossref_primary_10_1109_ACCESS_2024_3404866
crossref_primary_10_1109_JLT_2019_2922586
crossref_primary_10_1364_JOCN_457687
crossref_primary_10_1109_ACCESS_2024_3498704
crossref_primary_10_1109_JLT_2020_3003905
crossref_primary_10_1109_JSTQE_2022_3151878
crossref_primary_10_1007_s10489_020_02075_7
crossref_primary_10_1109_JLT_2021_3134098
crossref_primary_10_4218_etrij_2021_0182
crossref_primary_10_1515_joc_2022_0216
crossref_primary_10_3390_electronics12030601
crossref_primary_10_1016_j_jnca_2020_102576
crossref_primary_10_1109_JLT_2019_2923558
crossref_primary_10_1109_TNSM_2022_3198139
crossref_primary_10_1364_JOCN_409817
crossref_primary_10_1109_JLT_2020_2989153
crossref_primary_10_1109_ACCESS_2021_3083060
crossref_primary_10_3390_s24082636
crossref_primary_10_1364_JOCN_12_000A18
crossref_primary_10_1145_3530812
crossref_primary_10_1049_2024_8821891
crossref_primary_10_1109_JLT_2021_3055850
crossref_primary_10_1364_JOCN_439801
crossref_primary_10_1364_JOCN_484577
crossref_primary_10_1109_JLT_2020_3007491
crossref_primary_10_1109_JLT_2021_3125974
crossref_primary_10_1109_JLT_2022_3150362
crossref_primary_10_3390_ai6070131
crossref_primary_10_1109_JLT_2019_2947562
crossref_primary_10_1109_JSAC_2021_3064657
Cites_doi 10.1109/ECOC.2018.8535155
10.1109/MNET.2004.1276610
10.1364/OFC.2018.Th4D.7
10.1109/JLT.2018.2795345
10.1109/TKDE.2010.235
10.1364/JOCN.10.000162
10.1364/JOCN.9.0000A9
10.1109/COMST.2018.2880039
10.1364/JOCN.5.000836
10.1364/OFC.2018.M3A.5
10.1109/COMST.2014.2336610
10.1109/JLT.2013.2296781
10.1109/JSAC.2005.852182
10.1109/MCOM.2006.248169
10.1109/JLT.2017.2747223
10.1364/OFC.2019.M2A.2
10.2307/2346830
10.1109/JLT.2013.2294389
10.1109/JLT.2017.2660540
10.1109/MNET.2015.7293303
10.1364/JOCN.10.000A27
10.1364/JOCN.11.0000A1
10.1364/JOCN.10.000D29
10.1109/ECOC.2018.8535185
10.1109/INFOCOM.2014.6847918
10.1364/JOCN.10.000344
10.1364/OFC.2018.W4F.2
10.1109/JLT.2015.2456152
10.1109/JLT.2018.2864676
10.1109/MCOM.2018.1701191
10.1109/JLT.2015.2456052
10.1109/JLT.2017.2781540
10.1109/JLT.2012.2227683
10.1109/ECOC.2017.8346218
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
CorporateAuthor Univ. of California, Davis, CA (United States)
CorporateAuthor_xml – name: Univ. of California, Davis, CA (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
OIOZB
OTOTI
DOI 10.1109/JLT.2019.2902487
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
Engineering
EISSN 1558-2213
EndPage 1749
ExternalDocumentID 1612677
10_1109_JLT_2019_2902487
8656569
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: DE-SC0016700
  funderid: 10.13039/100000015
– fundername: National Science Foundation ICE-T:RC
  grantid: 1836921
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
RIG
OIOZB
OTOTI
ROP
ID FETCH-LOGICAL-c360t-89f0e2c9f55b2d6bf746acb63aba0a536f24eea872b0aa28d38c517760531b143
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464133000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8724
IngestDate Mon Feb 26 05:26:08 EST 2024
Mon Jun 30 10:19:31 EDT 2025
Sat Nov 29 02:11:21 EST 2025
Tue Nov 18 22:33:11 EST 2025
Wed Aug 27 02:44:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-89f0e2c9f55b2d6bf746acb63aba0a536f24eea872b0aa28d38c517760531b143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC)
National Science Foundation (NSF)
SC0016700; ICE-T:RC 1836921
ORCID 0000-0002-7805-6237
0000-0002-4251-788X
0000000278056237
000000024251788X
OpenAccessLink https://www.osti.gov/servlets/purl/1612677
PQID 2203398581
PQPubID 85485
PageCount 8
ParticipantIDs crossref_primary_10_1109_JLT_2019_2902487
proquest_journals_2203398581
ieee_primary_8656569
osti_scitechconnect_1612677
crossref_citationtrail_10_1109_JLT_2019_2902487
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ester (ref30) 0
pedregosa (ref33) 2011; 12
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref26
  doi: 10.1109/ECOC.2018.8535155
– ident: ref1
  doi: 10.1109/MNET.2004.1276610
– ident: ref35
  doi: 10.1364/OFC.2018.Th4D.7
– ident: ref29
  doi: 10.1109/JLT.2018.2795345
– ident: ref27
  doi: 10.1109/TKDE.2010.235
– ident: ref32
  doi: 10.1364/JOCN.10.000162
– ident: ref14
  doi: 10.1364/JOCN.9.0000A9
– ident: ref15
  doi: 10.1109/COMST.2018.2880039
– ident: ref8
  doi: 10.1364/JOCN.5.000836
– ident: ref24
  doi: 10.1364/OFC.2018.M3A.5
– ident: ref31
  doi: 10.1109/COMST.2014.2336610
– ident: ref13
  doi: 10.1109/JLT.2013.2296781
– ident: ref3
  doi: 10.1109/JSAC.2005.852182
– ident: ref4
  doi: 10.1109/MCOM.2006.248169
– ident: ref22
  doi: 10.1109/JLT.2017.2747223
– start-page: 226
  year: 0
  ident: ref30
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining
– ident: ref36
  doi: 10.1364/OFC.2019.M2A.2
– ident: ref34
  doi: 10.2307/2346830
– ident: ref9
  doi: 10.1109/JLT.2013.2294389
– ident: ref17
  doi: 10.1109/JLT.2017.2660540
– ident: ref2
  doi: 10.1109/MNET.2015.7293303
– ident: ref23
  doi: 10.1364/JOCN.10.000A27
– ident: ref11
  doi: 10.1364/JOCN.11.0000A1
– ident: ref19
  doi: 10.1364/JOCN.10.000D29
– ident: ref28
  doi: 10.1109/ECOC.2018.8535185
– ident: ref10
  doi: 10.1109/INFOCOM.2014.6847918
– ident: ref7
  doi: 10.1364/JOCN.10.000344
– ident: ref21
  doi: 10.1364/OFC.2018.W4F.2
– ident: ref5
  doi: 10.1109/JLT.2015.2456152
– ident: ref20
  doi: 10.1109/JLT.2018.2864676
– ident: ref16
  doi: 10.1109/MCOM.2018.1701191
– ident: ref6
  doi: 10.1109/JLT.2015.2456052
– ident: ref25
  doi: 10.1109/JLT.2017.2781540
– ident: ref12
  doi: 10.1109/JLT.2012.2227683
– ident: ref18
  doi: 10.1109/ECOC.2017.8346218
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref33
  article-title: Scikit-learn: Machine learning in python
  publication-title: J Mach Learn Res
SSID ssj0014487
Score 2.5822265
Snippet This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised...
Here this paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and...
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1742
SubjectTerms Algorithms
Anomalies
Anomaly detection
Artificial intelligence
Artificial neural networks
Clustering
Clustering algorithms
Cognition
data clustering module
Data clustering module (DCM)
data regression and classification module
data regression and classification module (DRCM)
DCM
DRCM
ENGINEERING
hybrid unsupervised and supervised machine learning
Knowledge engineering
Knowledge management
Machine learning
Modules
Monitoring
Optical communication
Optical fiber networks
Regression analysis
self-taught anomaly detection
Title Self-Taught Anomaly Detection With Hybrid Unsupervised/Supervised Machine Learning in Optical Networks
URI https://ieeexplore.ieee.org/document/8656569
https://www.proquest.com/docview/2203398581
https://www.osti.gov/servlets/purl/1612677
Volume 37
WOSCitedRecordID wos000464133000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2213
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014487
  issn: 0733-8724
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7aouCL1VbxbJU8-CK4vb1kNz8eRS1F6in0in0LSXaiB-fe0d0T-t-bZHMLogg-bR6S3SVfZjKT-WYC8KqS1nnm60LWCouKoy8Us7OCWoOOStkIlxKFL8V8Lm9u1Jc9eDPmwiBiIp_hWWymWH6zdtt4VDaVPJofah_2heBDrtYYMQhuRkqNFowFCafVLiRZqunHy0XkcKkzqmIFL_HbFpTuVAmPdZCoP_Rx2mTOD__v9x7Bw2xMkrcD-o9hD9sjOMyGJcli2x3B_cTzdN0x-Ctc-WJhtsElJ8H1_2FWd-Q99omQ1ZKvy_47ubiLWVzkuu22m6hJOmymV2OTfEr0SyS5Mus3smzJ5006EifzgVTePYHr8w-LdxdFvmqhcIyXfSGVL5E65eva0oZbLypunOXMWFOamnFPK0QTJtaWxlDZMOnqWUAhyrANNtdTOGjXLT4DIlXpZdADhjtaCWZNI2oTqxJ6ayvR8AlMd7OvXa5DHq_DWOnkj5RKB7x0xEtnvCbwehyxGWpw_KPvcQRm7JcxmcBJBFgHsyLWxnWRROR6HcxdykUYdLrDXWcR7jSlJWNK1nL2_O_vPIEH8csDjecUDvrbLb6Ae-5nv-xuX6bV-Qso1uKB
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VFkQvLbRFhD7wgQsS22zsXT-OFVClkAakpqI3y_baEClsou6mUv89tuOshECVelof7JXlz2PPeL6ZAXhXcG0ccWXGS2GzglqXCaIHGdbKGsx5xUwMFB6x8Zjf3IjvG_Chi4Wx1kbymT0NzejLr-ZmGZ7K-pwG9UM8ga1QOStFa3U-A29oxOBoRoiXcVysnZK56H8ZTQKLS5xiEXJ4sb8uoVhVxX_mXqb-OZHjNXO--7gJvoCdpE6isxX-L2HD1nuwm1RLlAS32YNnkelpmn1wV3bmsolaeqMceeP_t5rdo0-2jZSsGv2Ytr_Q8D7EcaHrulkuwlnS2Kp_1TXRZSRgWpRys_5E0xp9W8RHcTRe0cqbA7g-_zz5OMxSsYXMEJq3GRcut9gIV5YaV1Q7VlBlNCVKq1yVhDpcWKv8wupcKcwrwk05YIwGKdZe63oFm_W8tq8BcZE77k8CRQ0uGNGqYqUKeQmd1gWraA_669WXJmUiDwUxZjJaJLmQHi8Z8JIJrx6870YsVlk4Hui7H4Dp-iVMenAYAJZesQjZcU2gEZlWeoUXU-YHHa1xl0mIG4lxTojgJR-8-f8_38Lz4eRyJEcX46-HsB1msSL1HMFme7u0x_DU3LXT5vYk7tQ_G9Hlyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Taught+Anomaly+Detection+With+Hybrid+Unsupervised%2FSupervised+Machine+Learning+in+Optical+Networks&rft.jtitle=Journal+of+lightwave+technology&rft.au=Chen%2C+Xiaoliang&rft.au=Li%2C+Baojia&rft.au=Proietti%2C+Roberto&rft.au=Zhu%2C+Zuqing&rft.date=2019-04-01&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=37&rft.issue=7&rft.spage=1742&rft.epage=1749&rft_id=info:doi/10.1109%2FJLT.2019.2902487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2019_2902487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon