Self-Taught Anomaly Detection With Hybrid Unsupervised/Supervised Machine Learning in Optical Networks
This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM ena...
Gespeichert in:
| Veröffentlicht in: | Journal of lightwave technology Jg. 37; H. 7; S. 1742 - 1749 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0733-8724, 1558-2213 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to <inline-formula><tex-math notation="LaTeX">99\%</tex-math></inline-formula> anomaly detection accuracy can be achieved with a false positive rate below <inline-formula><tex-math notation="LaTeX">1\%</tex-math></inline-formula> . |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC) National Science Foundation (NSF) SC0016700; ICE-T:RC 1836921 |
| ISSN: | 0733-8724 1558-2213 |
| DOI: | 10.1109/JLT.2019.2902487 |