Self-Taught Anomaly Detection With Hybrid Unsupervised/Supervised Machine Learning in Optical Networks

This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM ena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology Jg. 37; H. 7; S. 1742 - 1749
Hauptverfasser: Chen, Xiaoliang, Li, Baojia, Proietti, Roberto, Zhu, Zuqing, Yoo, S. J. Ben
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0733-8724, 1558-2213
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to <inline-formula><tex-math notation="LaTeX">99\%</tex-math></inline-formula> anomaly detection accuracy can be achieved with a false positive rate below <inline-formula><tex-math notation="LaTeX">1\%</tex-math></inline-formula> .
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC)
National Science Foundation (NSF)
SC0016700; ICE-T:RC 1836921
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2019.2902487