New infeasible interior-point algorithm based on monomial method

We propose a new infeasible path-following algorithm for the convex linearly-constrained quadratic programming problem. This algorithm utilizes the monomial method rather than Newton's method for solving the KKT equations at each iteration. As a result, the sequence of iterates generated by thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research Jg. 23; H. 7; S. 653 - 666
Hauptverfasser: Yi-Chih, Hsieh, Bricker, Dennis L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.07.1996
Elsevier Science
Pergamon Press Inc
Schlagworte:
ISSN:0305-0548, 1873-765X, 0305-0548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new infeasible path-following algorithm for the convex linearly-constrained quadratic programming problem. This algorithm utilizes the monomial method rather than Newton's method for solving the KKT equations at each iteration. As a result, the sequence of iterates generated by this new algorithm is infeasible in the primal and dual linear constraints, but, unlike the sequence of iterates generated by other path-following algorithms, does satisfy the complementarity equations. Performance of this new algorithm is demonstrated by the results of solving QP problems (both separable and nonseparable) which are constructed so as to have known optimal solutions. Additionally, results of solving continuous quadratic knapsack problems indicate that for problems of a given size, the computational time of this new algorithm is less variable than other algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/0305-0548(95)00068-2