Linear and sublinear time algorithms for the basis of abelian groups
It is well known that every finite abelian group G can be represented as a direct product of cyclic groups: G ≅ G 1 × G 2 × ⋯ × G t , where each G i is a cyclic group of order p j for some prime p and integer j ≥ 1 . If a i generates the cyclic group of G i , i = 1 , 2 , … , t , then the elements a...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 412; číslo 32; s. 4110 - 4122 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier B.V
22.07.2011
Elsevier |
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | It is well known that every finite abelian group
G
can be represented as a direct product of cyclic groups:
G
≅
G
1
×
G
2
×
⋯
×
G
t
, where each
G
i
is a cyclic group of order
p
j
for some prime
p
and integer
j
≥
1
. If
a
i
generates the cyclic group of
G
i
,
i
=
1
,
2
,
…
,
t
, then the elements
a
1
,
a
2
,
…
,
a
t
are called a basis of
G
. We show a randomized algorithm such that given a set of generators
M
=
{
x
1
,
…
,
x
k
}
for an abelian group
G
and the prime factorization of order
ord
(
x
i
)
(
i
=
1
,
…
,
k
)
, it computes a basis of
G
in
O
(
|
M
|
(
log
n
)
2
+
∑
i
=
1
t
n
i
p
i
n
i
/
2
)
time, where
n
=
|
G
|
has prime factorization
p
1
n
1
p
2
n
2
⋯
p
t
n
t
(which is not a part of input). This generalizes Buchmann and Schmidt’s algorithm that takes
O
(
|
M
|
|
G
|
)
time. In another model, all elements in an abelian group are put into a list as a part of input. We obtain an
O
(
n
)
time deterministic algorithm and a sublinear time randomized algorithm for computing a basis of an abelian group. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2010.06.011 |