Compact Local Structure-Preserving Algorithms for the Nonlinear Schrödinger Equation with Wave Operator

Combining the compact method with the structure-preserving algorithm, we propose a compact local energy-preserving scheme and a compact local momentum-preserving scheme for the nonlinear Schrödinger equation with wave operator (NSEW). The convergence rates of both schemes are Oh4+τ2. The discrete lo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical problems in engineering Ročník 2020; číslo 2020; s. 1 - 12
Hlavní autoři: Huang, Langyang, Cai, Yaoxiong, Tian, Zhaowei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Témata:
ISSN:1024-123X, 1563-5147
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Combining the compact method with the structure-preserving algorithm, we propose a compact local energy-preserving scheme and a compact local momentum-preserving scheme for the nonlinear Schrödinger equation with wave operator (NSEW). The convergence rates of both schemes are Oh4+τ2. The discrete local conservative properties of the presented schemes are derived theoretically. Numerical experiments are carried out to demonstrate the convergence order and local conservation laws of the developed algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/4345278