Compact Local Structure-Preserving Algorithms for the Nonlinear Schrödinger Equation with Wave Operator
Combining the compact method with the structure-preserving algorithm, we propose a compact local energy-preserving scheme and a compact local momentum-preserving scheme for the nonlinear Schrödinger equation with wave operator (NSEW). The convergence rates of both schemes are Oh4+τ2. The discrete lo...
Gespeichert in:
| Veröffentlicht in: | Mathematical problems in engineering Jg. 2020; H. 2020; S. 1 - 12 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc |
| Schlagworte: | |
| ISSN: | 1024-123X, 1563-5147 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Combining the compact method with the structure-preserving algorithm, we propose a compact local energy-preserving scheme and a compact local momentum-preserving scheme for the nonlinear Schrödinger equation with wave operator (NSEW). The convergence rates of both schemes are Oh4+τ2. The discrete local conservative properties of the presented schemes are derived theoretically. Numerical experiments are carried out to demonstrate the convergence order and local conservation laws of the developed algorithms. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1024-123X 1563-5147 |
| DOI: | 10.1155/2020/4345278 |