Compact Local Structure-Preserving Algorithms for the Nonlinear Schrödinger Equation with Wave Operator

Combining the compact method with the structure-preserving algorithm, we propose a compact local energy-preserving scheme and a compact local momentum-preserving scheme for the nonlinear Schrödinger equation with wave operator (NSEW). The convergence rates of both schemes are Oh4+τ2. The discrete lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering Jg. 2020; H. 2020; S. 1 - 12
Hauptverfasser: Huang, Langyang, Cai, Yaoxiong, Tian, Zhaowei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Schlagworte:
ISSN:1024-123X, 1563-5147
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Combining the compact method with the structure-preserving algorithm, we propose a compact local energy-preserving scheme and a compact local momentum-preserving scheme for the nonlinear Schrödinger equation with wave operator (NSEW). The convergence rates of both schemes are Oh4+τ2. The discrete local conservative properties of the presented schemes are derived theoretically. Numerical experiments are carried out to demonstrate the convergence order and local conservation laws of the developed algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/4345278