Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods

This paper studies the modelling and identification problems for multi-input single-output (MISO) systems with colored noises. In order to obtain the unbiased recursive estimates of the systems, this paper presents a recursive least squares (RLS) identification algorithm based on bias compensation t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical and computer modelling Ročník 53; číslo 9; s. 1810 - 1819
Hlavný autor: Zhang, Yong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.05.2011
Elsevier
Predmet:
ISSN:0895-7177, 1872-9479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper studies the modelling and identification problems for multi-input single-output (MISO) systems with colored noises. In order to obtain the unbiased recursive estimates of the systems, this paper presents a recursive least squares (RLS) identification algorithm based on bias compensation technique. The basic idea is to eliminate the estimation bias by adding a correction term in the least squares (LS) estimates, a set of stable digital prefilters are suitably designed to preprocess the input sampled data from multi-input channels for the purpose of getting the bias term arisen by colored noises in LS estimates, and further to derive a bias compensation based RLS algorithm. The performance of the developed method is both analyzed theoretically and shown by means of simulation results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0895-7177
1872-9479
DOI:10.1016/j.mcm.2010.12.059