Riemannian manifolds in noncommutative geometry

We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spinc manifolds; and conversely, in the presence of a spinc structure. We also show how to obtain an analogue...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of geometry and physics Ročník 62; číslo 7; s. 1611 - 1638
Hlavní autoři: Lord, Steven, Rennie, Adam, Várilly, Joseph C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2012
Témata:
ISSN:0393-0440, 1879-1662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spinc manifolds; and conversely, in the presence of a spinc structure. We also show how to obtain an analogue of Kasparov’s fundamental class for a Riemannian manifold, and the associated notion of Poincaré duality. Along the way we clarify the bimodule and first-order conditions for spectral triples.
ISSN:0393-0440
1879-1662
DOI:10.1016/j.geomphys.2012.03.004