Riemannian manifolds in noncommutative geometry

We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spinc manifolds; and conversely, in the presence of a spinc structure. We also show how to obtain an analogue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry and physics Jg. 62; H. 7; S. 1611 - 1638
Hauptverfasser: Lord, Steven, Rennie, Adam, Várilly, Joseph C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2012
Schlagworte:
ISSN:0393-0440, 1879-1662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spinc manifolds; and conversely, in the presence of a spinc structure. We also show how to obtain an analogue of Kasparov’s fundamental class for a Riemannian manifold, and the associated notion of Poincaré duality. Along the way we clarify the bimodule and first-order conditions for spectral triples.
ISSN:0393-0440
1879-1662
DOI:10.1016/j.geomphys.2012.03.004