A generalized weak-scatterer approximation for nonlinear wave–structure interaction in marine hydrodynamics
In this paper, a generalized weak-scatterer (GWS) approximation is proposed for solving nonlinear wave–structure interaction problems. In contrast to the original weak-scatterer (OWS) theory, where the approximated free surface boundary conditions (FSBCs) are Taylor-expanded in the vertical directio...
Saved in:
| Published in: | Marine structures Vol. 86; p. 103292 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.11.2022
|
| Subjects: | |
| ISSN: | 0951-8339, 1873-4170 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, a generalized weak-scatterer (GWS) approximation is proposed for solving nonlinear wave–structure interaction problems. In contrast to the original weak-scatterer (OWS) theory, where the approximated free surface boundary conditions (FSBCs) are Taylor-expanded in the vertical direction from the incident wave surface, we apply Taylor series expansion in an arbitrary direction which, in particular, is tangential to the boundary of the floating structure close to the waterline. This leads to generalized kinematic and dynamic FSBCs for the radiated and scattered waves, along with corresponding expressions of the wave loads. Accordingly, an Arbitrary Lagrangian–Eulerian (ALE) approach is adopted to track the free-surface properties. The new GWS method is more consistent than the OWS model in that the wave markers do not separate from the body surface at the waterline for structures with flare. An Immersed-Boundary Adaptive Harmonic Polynomial Cell (IB-AHPC) method is implemented to solve the corresponding boundary value problems (BVPs) for both the velocity potential and the Lagrangian acceleration potential at each time step. The new formulation introduces additional convective terms in the FSBCs, making them similar to the seakeeping problems for ships with forward speed, and this requires special treatment to avoid instability in the time-domain simulations. Based on a matrix-based eigenvalue stability analysis, we illustrate that stable solutions can be achieved by introducing an upwind-biased scheme to discretize the convective terms in the kinematic FSBC. The proposed model is verified by three wave diffraction problems in regular waves, including a submerged circular cylinder, a rounded-corner rectangular ship section, and a trapezoidal section with a large flare angle.
•The weak-scatterer theory/model for nonlinear wave–structure interaction is extended to consistently deal with structures with flares.•A matrix-based stability analysis is conducted for the numerical implementation of the model.•A 3rd-order one-point upwind-biased scheme is adopted for calculating wave slope to stabilize the numerical computations.•The new model accurately predicts the displacement of the waterline and the wave loads on structures. |
|---|---|
| AbstractList | In this paper, a generalized weak-scatterer (GWS) approximation is proposed for solving nonlinear wave–structure interaction problems. In contrast to the original weak-scatterer (OWS) theory, where the approximated free surface boundary conditions (FSBCs) are Taylor-expanded in the vertical direction from the incident wave surface, we apply Taylor series expansion in an arbitrary direction which, in particular, is tangential to the boundary of the floating structure close to the waterline. This leads to generalized kinematic and dynamic FSBCs for the radiated and scattered waves, along with corresponding expressions of the wave loads. Accordingly, an Arbitrary Lagrangian–Eulerian (ALE) approach is adopted to track the free-surface properties. The new GWS method is more consistent than the OWS model in that the wave markers do not separate from the body surface at the waterline for structures with flare. An Immersed-Boundary Adaptive Harmonic Polynomial Cell (IB-AHPC) method is implemented to solve the corresponding boundary value problems (BVPs) for both the velocity potential and the Lagrangian acceleration potential at each time step. The new formulation introduces additional convective terms in the FSBCs, making them similar to the seakeeping problems for ships with forward speed, and this requires special treatment to avoid instability in the time-domain simulations. Based on a matrix-based eigenvalue stability analysis, we illustrate that stable solutions can be achieved by introducing an upwind-biased scheme to discretize the convective terms in the kinematic FSBC. The proposed model is verified by three wave diffraction problems in regular waves, including a submerged circular cylinder, a rounded-corner rectangular ship section, and a trapezoidal section with a large flare angle.
•The weak-scatterer theory/model for nonlinear wave–structure interaction is extended to consistently deal with structures with flares.•A matrix-based stability analysis is conducted for the numerical implementation of the model.•A 3rd-order one-point upwind-biased scheme is adopted for calculating wave slope to stabilize the numerical computations.•The new model accurately predicts the displacement of the waterline and the wave loads on structures. |
| ArticleNumber | 103292 |
| Author | Tong, Chao Shao, Yanlin Hanssen, Finn-Christian W. Bingham, Harry B. |
| Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0002-8134-0263 surname: Tong fullname: Tong, Chao organization: Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Lyngby, Denmark – sequence: 2 givenname: Yanlin orcidid: 0000-0002-9080-8438 surname: Shao fullname: Shao, Yanlin email: yshao@mek.dtu.dk organization: Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Lyngby, Denmark – sequence: 3 givenname: Harry B. surname: Bingham fullname: Bingham, Harry B. organization: Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Lyngby, Denmark – sequence: 4 givenname: Finn-Christian W. surname: Hanssen fullname: Hanssen, Finn-Christian W. organization: Centre for Autonomous Marine Operations and Systems (AMOS), Department of Marine Technology, N-7491, Trondheim, Norway |
| BookMark | eNqFkEtOAzEQRC0EEiFwBeQLTPAn45mRWBAhflIkNuwtj90DDoknaptPWHEHbshJcBLYsMmqpVa_qq46IvuhD0DIKWcjzrg6m40WBmPCFzsSTIi8lKIRe2TA60oWY16xfTJgTcmLWsrmkBzFOGOMV5zzAVlM6CMEQDP3H-DoG5jnIlqTEiAgNcsl9u9-YZLvA-16pNl77gMYpG_mFb4_vzbG6QWB-pAhYzenPtD8VD6kTyuHvVsFs_A2HpODzswjnPzOIXm4vnq4vC2m9zd3l5NpYaViqZCsrI3hRsEYWtVWrRAMeNl1DZS2EkrWnSg5lLVqbasaycbc1syVqnOlcyCHRG1lLfYxInR6iTkErjRnet2Znum_zvS6M73tLIPn_0Dr0yZ8QuPnu_GLLQ4526sH1NF6CBacR7BJu97vkvgB6hiUJA |
| CitedBy_id | crossref_primary_10_1080_19942060_2025_2486657 crossref_primary_10_1016_j_marstruc_2023_103537 crossref_primary_10_1007_s11071_024_09943_8 crossref_primary_10_1016_j_tws_2025_113089 crossref_primary_10_1016_j_coastaleng_2022_104273 crossref_primary_10_1016_j_enganabound_2024_105870 |
| Cites_doi | 10.2534/jjasnaoe1968.1996.180_373 10.1016/j.apor.2018.08.017 10.1016/j.jcp.2015.07.026 10.1016/j.oceaneng.2016.09.017 10.1016/j.oceaneng.2008.11.003 10.1002/nme.5615 10.1007/s10665-006-9108-4 10.1061/(ASCE)WW.1943-5460.0000339 10.1016/j.euromechflu.2012.01.017 10.1017/S0022112081002851 10.1016/j.apor.2019.101913 10.1002/fld.131 10.1002/fld.2726 10.1017/S0022112095004071 10.1016/0098-3004(88)90066-0 10.1016/j.oceaneng.2006.04.009 10.1016/j.ijnaoe.2017.03.009 10.1016/S0378-3839(96)00046-4 10.1016/j.jcp.2006.10.017 10.1243/0954406001523786 10.1021/ac60214a047 10.1017/S0022112063000896 10.1016/j.apor.2018.03.014 10.1016/j.oceaneng.2021.108574 10.1016/j.wavemoti.2019.01.007 10.1016/j.apor.2017.11.001 10.1002/fld.506 10.1016/j.coastaleng.2012.07.002 10.2534/jjasnaoe1952.1960.108_5 10.1061/(ASCE)0733-950X(1992)118:5(496) 10.1016/j.jcp.2014.06.021 10.1017/S0022112084002160 10.1103/PhysRevFluids.5.084801 10.1016/j.oceaneng.2013.07.014 10.1002/nme.6648 10.1016/S0029-8018(02)00037-9 10.1016/j.egypro.2017.10.351 10.1016/j.ijnaoe.2016.02.002 10.1016/j.jcp.2006.06.046 10.1016/j.jfluidstructs.2005.12.005 10.1017/S0022112087000028 10.1002/nme.5631 10.1016/j.jcp.2008.11.028 10.1016/S0141-1187(05)80073-2 10.1016/j.compfluid.2016.09.012 10.1016/j.euromechflu.2021.04.009 10.3390/fluids5040187 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.marstruc.2022.103292 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Military & Naval Science |
| EISSN | 1873-4170 |
| ExternalDocumentID | 10_1016_j_marstruc_2022_103292 S0951833922001289 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c360t-3058aa1a6e4eb6b7b220e15ff9e5c72638f251e586bcb693041c80d56fd5dde3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855675900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8339 |
| IngestDate | Sat Nov 29 07:08:16 EST 2025 Tue Nov 18 22:26:14 EST 2025 Fri Feb 23 02:40:42 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stability analysis Adaptive harmonic polynomial cell method Immersed boundary method Nonlinear wave-body interaction Generalized weak-scatterer approximation Potential flow |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c360t-3058aa1a6e4eb6b7b220e15ff9e5c72638f251e586bcb693041c80d56fd5dde3 |
| ORCID | 0000-0002-9080-8438 0000-0002-8134-0263 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.marstruc.2022.103292 |
| ParticipantIDs | crossref_primary_10_1016_j_marstruc_2022_103292 crossref_citationtrail_10_1016_j_marstruc_2022_103292 elsevier_sciencedirect_doi_10_1016_j_marstruc_2022_103292 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Marine structures |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Flavià FF, McNatt C, Rongère F, Babarit A, Clément AH. Computation of the diffraction transfer matrix and the radiation characteristics in the open-source BEM code NEMOH. In: 35th international conference on ocean, offshore and artic engineering. 2016. Bai, Teng (b8) 2013; 74 Tong C, Shao Y, Bingham HB. Modeling fully nonlinear wave-structure interaction by an adaptive harmonic polynomial cell method with immersed boundaries. In: 36th international workshop on water waves and floating bodies. 2021. Ansys (b2) 2013 Chaplin (b62) 1984; 147 Li (b69) 2017 Kamath, Bihs, Alagan Chella, Arntsen (b34) 2016; 142 Shao, Zheng, Liang, Chen (b10) 2021 Shao, Faltinsen (b25) 2014; 274 Yu, Fuhrman, Shao, Liao, Duan, Zhang (b54) 2021; 89 Rienecker, Fenton (b70) 1981; 104 Kim, Kim, Park, Jeon, Chun (b36) 2016; 8 Tanizawa, Minami, Naito (b67) 1999 Koo, Kim (b68) 2007; 34 Amini-Afshar, Bingham (b44) 2017; 69 Fenton (b56) 1988; 14 Ducrozet, Bonnefoy, Le Touzé, Ferrant (b57) 2012; 34 Hu, Greaves, Raby (b32) 2016; 126 Liang, Santo, Shao, Law, Chan (b50) 2020; 5 Amini-Afshar, Bingham (b45) 2018; 80 Oggiano, Pierella, Nygaard, De Vaal, Arens (b35) 2017; 137 Guerber (b63) 2011 Vada (b64) 1987; 174 Savitzky, Golay (b60) 1964; 36 Zhang, Teng (b43) 2021; 222 Tong, Shao, Bingham, Hanssen (b29) 2021; 122 Hanssen, Bardazzi, Lugni, Greco (b27) 2018; 113 Lee (b1) 1995 Malenica, Molin (b11) 1995; 302 Engsig-Karup, Bingham, Lindberg (b19) 2009; 228 Yan, Ma (b23) 2007; 221 Letournel, Ferrant, Babarit, Ducrozet, Harris, Benoit, Dombre (b40) 2014 Isaacson, Cheung (b6) 1991; 13 Ogilvie (b4) 1963; 16 Robaux, Benoit (b49) 2020 Bingham, Zhang (b18) 2007; 58 Wuillaume, Ferrant, Babarit, Lynch (b39) 2019 Hanssen, Greco, Shao (b26) 2015 Jacobsen, Fuhrman, Fredsøe (b30) 2012; 70 Wang, Faltinsen (b51) 2018 Kim, Kim (b38) 2009 Shen, Marilena, Faltinsen, Ma (b52) 2020 Nojiri, Murayama (b66) 1975 Wang, Wu (b22) 2006; 22 Greco (b55) 2001 Isaacson, Cheung (b7) 1992; 118 Ma, Wu, Eatock Taylor (b20) 2001; 36 Pinkster (b5) 1980 Kashiwagi (b14) 1996; 1996 Shao (b13) 2010 Higuera, Lara, Losada (b31) 2013; 71 Tong, Shao, Hanssen, Li, Xie, Lin (b28) 2019; 88 Amini-Afshar, Bingham, Henshaw (b46) 2019; 92 Bihs, Kamath, Chella, Aggarwal, Arntsen (b33) 2016; 140 Bai, Eatock Taylor (b16) 2009; 36 Hanssen (b48) 2019 Shao, Faltinsen (b24) 2012 Ma, Hanssen, Siddiqui, Greco, Faltinsen (b61) 2018; 113 Wu, Eatock Taylor (b21) 2003; 30 Berland, Bogey, Marsden, Bailly (b58) 2007; 224 Bardazzi, Lugni, Antuono, Graziani, Faltinsen (b53) 2015; 299 Kinoshita, Bao (b12) 2000; 214 Chauvigné, Letournel, Babarit, Ducrozet, Bozonnet, Gilloteaux, Ferrant (b42) 2015 Ferrant, Touzé, Pelletier (b15) 2003; 43 Letournel, Chauvigné, Gelly, Babarit, Ducrozet, Ferrant (b41) 2018; 75 Pawlowski (b37) 1994 Maruo (b65) 1960; 1960 Zhu, Greco, Shao (b47) 2017; 9 Li, Fleming (b17) 1997; 30 Zheng, Chen, Liang, Zhao, Shao (b9) 2020; 5 Bai (10.1016/j.marstruc.2022.103292_b16) 2009; 36 Rienecker (10.1016/j.marstruc.2022.103292_b70) 1981; 104 Shen (10.1016/j.marstruc.2022.103292_b52) 2020 Hanssen (10.1016/j.marstruc.2022.103292_b27) 2018; 113 Kim (10.1016/j.marstruc.2022.103292_b38) 2009 Letournel (10.1016/j.marstruc.2022.103292_b41) 2018; 75 Shao (10.1016/j.marstruc.2022.103292_b25) 2014; 274 Chaplin (10.1016/j.marstruc.2022.103292_b62) 1984; 147 Oggiano (10.1016/j.marstruc.2022.103292_b35) 2017; 137 Robaux (10.1016/j.marstruc.2022.103292_b49) 2020 Shao (10.1016/j.marstruc.2022.103292_b10) 2021 Savitzky (10.1016/j.marstruc.2022.103292_b60) 1964; 36 Tanizawa (10.1016/j.marstruc.2022.103292_b67) 1999 Amini-Afshar (10.1016/j.marstruc.2022.103292_b46) 2019; 92 Berland (10.1016/j.marstruc.2022.103292_b58) 2007; 224 Amini-Afshar (10.1016/j.marstruc.2022.103292_b44) 2017; 69 Pinkster (10.1016/j.marstruc.2022.103292_b5) 1980 Li (10.1016/j.marstruc.2022.103292_b17) 1997; 30 Tong (10.1016/j.marstruc.2022.103292_b28) 2019; 88 Zhu (10.1016/j.marstruc.2022.103292_b47) 2017; 9 Nojiri (10.1016/j.marstruc.2022.103292_b66) 1975 Kamath (10.1016/j.marstruc.2022.103292_b34) 2016; 142 Hu (10.1016/j.marstruc.2022.103292_b32) 2016; 126 Hanssen (10.1016/j.marstruc.2022.103292_b48) 2019 Higuera (10.1016/j.marstruc.2022.103292_b31) 2013; 71 Wuillaume (10.1016/j.marstruc.2022.103292_b39) 2019 Malenica (10.1016/j.marstruc.2022.103292_b11) 1995; 302 Koo (10.1016/j.marstruc.2022.103292_b68) 2007; 34 Kashiwagi (10.1016/j.marstruc.2022.103292_b14) 1996; 1996 Zhang (10.1016/j.marstruc.2022.103292_b43) 2021; 222 Ferrant (10.1016/j.marstruc.2022.103292_b15) 2003; 43 Bingham (10.1016/j.marstruc.2022.103292_b18) 2007; 58 Engsig-Karup (10.1016/j.marstruc.2022.103292_b19) 2009; 228 Yan (10.1016/j.marstruc.2022.103292_b23) 2007; 221 Guerber (10.1016/j.marstruc.2022.103292_b63) 2011 Ogilvie (10.1016/j.marstruc.2022.103292_b4) 1963; 16 Amini-Afshar (10.1016/j.marstruc.2022.103292_b45) 2018; 80 Ducrozet (10.1016/j.marstruc.2022.103292_b57) 2012; 34 Yu (10.1016/j.marstruc.2022.103292_b54) 2021; 89 Kim (10.1016/j.marstruc.2022.103292_b36) 2016; 8 Bai (10.1016/j.marstruc.2022.103292_b8) 2013; 74 Kinoshita (10.1016/j.marstruc.2022.103292_b12) 2000; 214 Greco (10.1016/j.marstruc.2022.103292_b55) 2001 Chauvigné (10.1016/j.marstruc.2022.103292_b42) 2015 Liang (10.1016/j.marstruc.2022.103292_b50) 2020; 5 Vada (10.1016/j.marstruc.2022.103292_b64) 1987; 174 Bihs (10.1016/j.marstruc.2022.103292_b33) 2016; 140 Letournel (10.1016/j.marstruc.2022.103292_b40) 2014 Fenton (10.1016/j.marstruc.2022.103292_b56) 1988; 14 Hanssen (10.1016/j.marstruc.2022.103292_b26) 2015 Tong (10.1016/j.marstruc.2022.103292_b29) 2021; 122 Ma (10.1016/j.marstruc.2022.103292_b61) 2018; 113 Bardazzi (10.1016/j.marstruc.2022.103292_b53) 2015; 299 Ansys (10.1016/j.marstruc.2022.103292_b2) 2013 Wu (10.1016/j.marstruc.2022.103292_b21) 2003; 30 Ma (10.1016/j.marstruc.2022.103292_b20) 2001; 36 10.1016/j.marstruc.2022.103292_b59 Shao (10.1016/j.marstruc.2022.103292_b24) 2012 Wang (10.1016/j.marstruc.2022.103292_b51) 2018 Maruo (10.1016/j.marstruc.2022.103292_b65) 1960; 1960 Li (10.1016/j.marstruc.2022.103292_b69) 2017 Shao (10.1016/j.marstruc.2022.103292_b13) 2010 Lee (10.1016/j.marstruc.2022.103292_b1) 1995 Zheng (10.1016/j.marstruc.2022.103292_b9) 2020; 5 Isaacson (10.1016/j.marstruc.2022.103292_b7) 1992; 118 Isaacson (10.1016/j.marstruc.2022.103292_b6) 1991; 13 Wang (10.1016/j.marstruc.2022.103292_b22) 2006; 22 Jacobsen (10.1016/j.marstruc.2022.103292_b30) 2012; 70 10.1016/j.marstruc.2022.103292_b3 Pawlowski (10.1016/j.marstruc.2022.103292_b37) 1994 |
| References_xml | – start-page: 369 year: 2012 end-page: 380 ident: b24 article-title: Towards efficient fully-nonlinear potential-flow solvers in marine hydrodynamics publication-title: ASME 2012 31st international conference on ocean, offshore and arctic engineering – volume: 89 start-page: 29 year: 2021 end-page: 44 ident: b54 article-title: Enhanced solution of 2D incompressible Navier–Stokes equations based on an immersed-boundary generalized harmonic polynomial cell method publication-title: Eur J Mech B Fluids – year: 2021 ident: b10 article-title: A consistent second-order hydrodynamic model in the time domain for floating structures with large horizontal motions publication-title: Comput-Aided Civ Infrastruct Eng – volume: 30 start-page: 235 year: 1997 end-page: 258 ident: b17 article-title: A three dimensional multigrid model for fully nonlinear water waves publication-title: Coast Eng – volume: 58 start-page: 211 year: 2007 end-page: 228 ident: b18 article-title: On the accuracy of finite-difference solutions for nonlinear water waves publication-title: J Eng Math – volume: 104 start-page: 119 year: 1981 end-page: 137 ident: b70 article-title: A Fourier approximation method for steady water waves publication-title: J Fluid Mech – volume: 113 start-page: 311 year: 2018 end-page: 351 ident: b27 article-title: Free-surface tracking in 2D with the harmonic polynomial cell method: Two alternative strategies publication-title: Internat J Numer Methods Engrg – year: 1994 ident: b37 article-title: A nonlinear theory of ship motion in waves – start-page: 51:131 year: 1975 end-page: 152 ident: b66 article-title: A study on the drifting force on two-dimensional floating body in regular waves publication-title: Trans West-Japan Soc Nav Archit – volume: 214 start-page: 789 year: 2000 end-page: 800 ident: b12 article-title: Third-order wave diffraction by a truncated circular cylinder publication-title: Proc Inst Mech Eng C – year: 2001 ident: b55 article-title: A two-dimensional study of green-water loading (Ph. D. dissertation) – volume: 36 start-page: 223 year: 2009 end-page: 236 ident: b16 article-title: Fully nonlinear simulation of wave interaction with fixed and floating flared structures publication-title: Ocean Eng – volume: 34 start-page: 19 year: 2012 end-page: 34 ident: b57 article-title: A modified high-order spectral method for wavemaker modeling in a numerical wave tank publication-title: Eur J Mech B Fluids – volume: 5 year: 2020 ident: b50 article-title: Liquid sloshing in an upright circular tank under periodic and transient excitations publication-title: Phys Rev Fluids – volume: 88 start-page: 34 year: 2019 end-page: 56 ident: b28 article-title: Numerical analysis on the generation, propagation and interaction of solitary waves by a harmonic polynomial cell method publication-title: Wave Motion – volume: 8 start-page: 188 year: 2016 end-page: 197 ident: b36 article-title: Numerical simulation of wave and current interaction with a fixed offshore substructure publication-title: Int J Nav Archit Ocean Eng – volume: 13 start-page: 175 year: 1991 end-page: 186 ident: b6 article-title: Second order wave diffraction around two-dimensional bodies by time-domain method publication-title: Appl Ocean Res – volume: 36 start-page: 265 year: 2001 end-page: 285 ident: b20 article-title: Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1: Methodology and numerical procedure publication-title: Internat J Numer Methods Fluids – volume: 126 start-page: 329 year: 2016 end-page: 342 ident: b32 article-title: Numerical wave tank study of extreme waves and wave-structure interaction using OpenFoam® publication-title: Ocean Eng – year: 2020 ident: b52 article-title: Numerical study towards closed fish farms in waves using two harmonic polynomial cell methods publication-title: Proceedings of 35th international workshop on water waves and floating bodies – volume: 16 start-page: 451 year: 1963 end-page: 472 ident: b4 article-title: First-and second-order forces on a cylinder submerged under a free surface publication-title: J Fluid Mech – volume: 140 start-page: 191 year: 2016 end-page: 208 ident: b33 article-title: A new level set numerical wave tank with improved density interpolation for complex wave hydrodynamics publication-title: Comput & Fluids – volume: 1960 start-page: 5 year: 1960 end-page: 13 ident: b65 article-title: On the increase of the resistance of a ship in rough seas publication-title: J Zosen Kiokai – volume: 43 start-page: 1257 year: 2003 end-page: 1277 ident: b15 article-title: Non-linear time-domain models for irregular wave diffraction about offshore structures publication-title: Internat J Numer Methods Fluids – volume: 122 start-page: 2945 year: 2021 end-page: 2980 ident: b29 article-title: An adaptive harmonic polynomial cell method with immersed boundaries: Accuracy, stability, and applications publication-title: Internat J Numer Methods Engrg – volume: 80 start-page: 197 year: 2018 end-page: 219 ident: b45 article-title: Pseudo-impulsive solutions of the forward-speed diffraction problem using a high-order finite-difference method publication-title: Appl Ocean Res – year: 2009 ident: b38 article-title: Time-domain analysis of nonlinear ship motion responses based on weak-scatterer hypothesis publication-title: The nineteenth international offshore and polar engineering conference – volume: 222 year: 2021 ident: b43 article-title: A nonlinear potential flow model for higher-harmonic wave loads and ringing response of a monopile publication-title: Ocean Eng – volume: 74 start-page: 168 year: 2013 end-page: 177 ident: b8 article-title: Simulation of second-order wave interaction with fixed and floating structures in time domain publication-title: Ocean Eng – volume: 75 start-page: 201 year: 2018 end-page: 222 ident: b41 article-title: Weakly nonlinear modeling of submerged wave energy converters publication-title: Appl Ocean Res – volume: 228 start-page: 2100 year: 2009 end-page: 2118 ident: b19 article-title: An efficient flexible-order model for 3D nonlinear water waves publication-title: J Comput Phys – volume: 69 start-page: 220 year: 2017 end-page: 244 ident: b44 article-title: Solving the linearized forward-speed radiation problem using a high-order finite difference method on overlapping grids publication-title: Appl Ocean Res – volume: 14 start-page: 357 year: 1988 end-page: 368 ident: b56 article-title: The numerical solution of steady water wave problems publication-title: Comput Geosci – volume: 9 start-page: 598 year: 2017 end-page: 612 ident: b47 article-title: Improved HPC method for nonlinear wave tank publication-title: Int J Nav Archit Ocean Eng – volume: 274 start-page: 312 year: 2014 end-page: 332 ident: b25 article-title: A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics publication-title: J Comput Phys – volume: 70 start-page: 1073 year: 2012 end-page: 1088 ident: b30 article-title: A wave generation toolbox for the open-source CFD library: OpenFoam® publication-title: Internat J Numer Methods Fluids – reference: Tong C, Shao Y, Bingham HB. Modeling fully nonlinear wave-structure interaction by an adaptive harmonic polynomial cell method with immersed boundaries. In: 36th international workshop on water waves and floating bodies. 2021. – volume: 174 start-page: 23 year: 1987 end-page: 37 ident: b64 article-title: A numerical solution of the second-order wave-diffraction problem for a submerged cylinder of arbitrary shape publication-title: J Fluid Mech – volume: 30 start-page: 387 year: 2003 end-page: 400 ident: b21 article-title: The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies publication-title: Ocean Eng – volume: 92 year: 2019 ident: b46 article-title: Stability analysis of high-order finite-difference discretizations of the linearized forward-speed seakeeping problem publication-title: Appl Ocean Res – year: 2017 ident: b69 article-title: Fully nonlinear numerical simulations of wave interactions with multiple structures at resonance – year: 2019 ident: b48 article-title: Non-linear wave-body interaction in severe waves – year: 2018 ident: b51 article-title: A harmonic polynomial method based on cartesian grids with local refinement for complex wave-body interactions publication-title: Proceedings of 33rd international workshop on water waves and floating bodies – volume: 1996 start-page: 373 year: 1996 end-page: 381 ident: b14 article-title: Full-nonlinear simulations of hydrodynamic forces on a heaving two-dimensional body publication-title: J Soc Nav Archit Jpn – year: 2015 ident: b26 article-title: The harmonic polynomial cell method for moving bodies immersed in a cartesian background grid publication-title: ASME 2015 34th international conference on ocean, offshore and arctic engineering – year: 2011 ident: b63 article-title: Modélisation numérique des interactions non-linéaires entre vagues et structures immergées, appliquéea la simulation de systemes houlomoteurs – volume: 113 start-page: 681 year: 2018 end-page: 718 ident: b61 article-title: Local and global properties of the harmonic polynomial cell method: In-depth analysis in two dimensions publication-title: Internat J Numer Methods Engrg – year: 1980 ident: b5 article-title: Low frequency second order wave exciting forces on floating structures – volume: 22 start-page: 441 year: 2006 end-page: 461 ident: b22 article-title: An unstructured-mesh-based finite element simulation of wave interactions with non-wall-sided bodies publication-title: J Fluids Struct – volume: 142 year: 2016 ident: b34 article-title: Upstream-cylinder and downstream-cylinder influence on the hydrodynamics of a four-cylinder group publication-title: J Waterw Port Coast Ocean Eng – year: 2015 ident: b42 article-title: Progresses in the development of a weakly-nonlinear wave body interaction model based on the weak-scatterer approximation publication-title: International conference on offshore mechanics and arctic engineering, vol. 56574 – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: b60 article-title: Smoothing and differentiation of data by simplified least squares procedures. publication-title: Anal Chem – volume: 224 start-page: 637 year: 2007 end-page: 662 ident: b58 article-title: High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems publication-title: J Comput Phys – year: 1995 ident: b1 article-title: WAMIT theory manual – volume: 5 start-page: 187 year: 2020 ident: b9 article-title: Hydrodynamic responses of a 6MW spar-type floating offshore wind turbine in regular waves and uniform current publication-title: Fluids – reference: Flavià FF, McNatt C, Rongère F, Babarit A, Clément AH. Computation of the diffraction transfer matrix and the radiation characteristics in the open-source BEM code NEMOH. In: 35th international conference on ocean, offshore and artic engineering. 2016. – year: 2019 ident: b39 article-title: Development of a panel cutting method coupled with an unsteady potential flow model based on the weak-scatterer approximation publication-title: International conference on offshore mechanics and arctic engineering, vol. 58899 – volume: 71 start-page: 102 year: 2013 end-page: 118 ident: b31 article-title: Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM® publication-title: Coast Eng – year: 2010 ident: b13 article-title: Numerical potential-flow studies on weakly-nonlinear wave-body interactions with/without small forward speeds – year: 2020 ident: b49 article-title: Development and validation of a numerical wave tank based on the harmonic polynomial cell and immersed boundary methods to model nonlinear wave-structure interaction – year: 1999 ident: b67 article-title: Estimation of wave drift force by numerical wave tank publication-title: The ninth international offshore and polar engineering conference – volume: 299 start-page: 630 year: 2015 end-page: 648 ident: b53 article-title: Generalized HPC method for the Poisson equation publication-title: J Comput Phys – volume: 34 start-page: 1000 year: 2007 end-page: 1012 ident: b68 article-title: Fully nonlinear wave-body interactions with surface-piercing bodies publication-title: Ocean Eng – year: 2014 ident: b40 article-title: Comparison of fully nonlinear and weakly nonlinear potential flow solvers for the study of wave energy converters undergoing large amplitude motions publication-title: International conference on offshore mechanics and arctic engineering, vol. 45547 – volume: 137 start-page: 273 year: 2017 end-page: 281 ident: b35 article-title: Reproduction of steep long crested irregular waves with CFD using the VOF method publication-title: Energy Procedia – volume: 118 start-page: 496 year: 1992 end-page: 516 ident: b7 article-title: Time-domain second-order wave diffraction in three dimensions publication-title: J Waterw Port Coast Ocean Eng – volume: 221 start-page: 666 year: 2007 end-page: 692 ident: b23 article-title: Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method publication-title: J Comput Phys – volume: 302 start-page: 203 year: 1995 end-page: 229 ident: b11 article-title: Third-harmonic wave diffraction by a vertical cylinder publication-title: J Fluid Mech – volume: 147 start-page: 449 year: 1984 end-page: 464 ident: b62 article-title: Nonlinear forces on a horizontal cylinder beneath waves publication-title: J Fluid Mech – start-page: 15317 year: 2013 ident: b2 article-title: AQWA theory manual – start-page: 369 year: 2012 ident: 10.1016/j.marstruc.2022.103292_b24 article-title: Towards efficient fully-nonlinear potential-flow solvers in marine hydrodynamics – ident: 10.1016/j.marstruc.2022.103292_b3 – volume: 1996 start-page: 373 issue: 180 year: 1996 ident: 10.1016/j.marstruc.2022.103292_b14 article-title: Full-nonlinear simulations of hydrodynamic forces on a heaving two-dimensional body publication-title: J Soc Nav Archit Jpn doi: 10.2534/jjasnaoe1968.1996.180_373 – year: 1999 ident: 10.1016/j.marstruc.2022.103292_b67 article-title: Estimation of wave drift force by numerical wave tank – year: 2009 ident: 10.1016/j.marstruc.2022.103292_b38 article-title: Time-domain analysis of nonlinear ship motion responses based on weak-scatterer hypothesis – volume: 80 start-page: 197 year: 2018 ident: 10.1016/j.marstruc.2022.103292_b45 article-title: Pseudo-impulsive solutions of the forward-speed diffraction problem using a high-order finite-difference method publication-title: Appl Ocean Res doi: 10.1016/j.apor.2018.08.017 – volume: 299 start-page: 630 year: 2015 ident: 10.1016/j.marstruc.2022.103292_b53 article-title: Generalized HPC method for the Poisson equation publication-title: J Comput Phys doi: 10.1016/j.jcp.2015.07.026 – year: 2015 ident: 10.1016/j.marstruc.2022.103292_b26 article-title: The harmonic polynomial cell method for moving bodies immersed in a cartesian background grid – volume: 126 start-page: 329 year: 2016 ident: 10.1016/j.marstruc.2022.103292_b32 article-title: Numerical wave tank study of extreme waves and wave-structure interaction using OpenFoam® publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2016.09.017 – ident: 10.1016/j.marstruc.2022.103292_b59 – volume: 36 start-page: 223 issn: 0029-8018 issue: 3” year: 2009 ident: 10.1016/j.marstruc.2022.103292_b16 article-title: Fully nonlinear simulation of wave interaction with fixed and floating flared structures publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2008.11.003 – volume: 113 start-page: 311 issue: 2 year: 2018 ident: 10.1016/j.marstruc.2022.103292_b27 article-title: Free-surface tracking in 2D with the harmonic polynomial cell method: Two alternative strategies publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.5615 – volume: 58 start-page: 211 issue: 1–4 year: 2007 ident: 10.1016/j.marstruc.2022.103292_b18 article-title: On the accuracy of finite-difference solutions for nonlinear water waves publication-title: J Eng Math doi: 10.1007/s10665-006-9108-4 – volume: 142 issue: 4 year: 2016 ident: 10.1016/j.marstruc.2022.103292_b34 article-title: Upstream-cylinder and downstream-cylinder influence on the hydrodynamics of a four-cylinder group publication-title: J Waterw Port Coast Ocean Eng doi: 10.1061/(ASCE)WW.1943-5460.0000339 – year: 2021 ident: 10.1016/j.marstruc.2022.103292_b10 article-title: A consistent second-order hydrodynamic model in the time domain for floating structures with large horizontal motions publication-title: Comput-Aided Civ Infrastruct Eng – year: 2019 ident: 10.1016/j.marstruc.2022.103292_b39 article-title: Development of a panel cutting method coupled with an unsteady potential flow model based on the weak-scatterer approximation – volume: 34 start-page: 19 year: 2012 ident: 10.1016/j.marstruc.2022.103292_b57 article-title: A modified high-order spectral method for wavemaker modeling in a numerical wave tank publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2012.01.017 – volume: 104 start-page: 119 year: 1981 ident: 10.1016/j.marstruc.2022.103292_b70 article-title: A Fourier approximation method for steady water waves publication-title: J Fluid Mech doi: 10.1017/S0022112081002851 – year: 1995 ident: 10.1016/j.marstruc.2022.103292_b1 – year: 1994 ident: 10.1016/j.marstruc.2022.103292_b37 – volume: 92 year: 2019 ident: 10.1016/j.marstruc.2022.103292_b46 article-title: Stability analysis of high-order finite-difference discretizations of the linearized forward-speed seakeeping problem publication-title: Appl Ocean Res doi: 10.1016/j.apor.2019.101913 – year: 2017 ident: 10.1016/j.marstruc.2022.103292_b69 – volume: 36 start-page: 265 issue: 3 year: 2001 ident: 10.1016/j.marstruc.2022.103292_b20 article-title: Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1: Methodology and numerical procedure publication-title: Internat J Numer Methods Fluids doi: 10.1002/fld.131 – volume: 70 start-page: 1073 issue: 9 year: 2012 ident: 10.1016/j.marstruc.2022.103292_b30 article-title: A wave generation toolbox for the open-source CFD library: OpenFoam® publication-title: Internat J Numer Methods Fluids doi: 10.1002/fld.2726 – volume: 302 start-page: 203 year: 1995 ident: 10.1016/j.marstruc.2022.103292_b11 article-title: Third-harmonic wave diffraction by a vertical cylinder publication-title: J Fluid Mech doi: 10.1017/S0022112095004071 – volume: 14 start-page: 357 issue: 3 year: 1988 ident: 10.1016/j.marstruc.2022.103292_b56 article-title: The numerical solution of steady water wave problems publication-title: Comput Geosci doi: 10.1016/0098-3004(88)90066-0 – volume: 34 start-page: 1000 issue: 7 year: 2007 ident: 10.1016/j.marstruc.2022.103292_b68 article-title: Fully nonlinear wave-body interactions with surface-piercing bodies publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2006.04.009 – volume: 9 start-page: 598 issue: 6 year: 2017 ident: 10.1016/j.marstruc.2022.103292_b47 article-title: Improved HPC method for nonlinear wave tank publication-title: Int J Nav Archit Ocean Eng doi: 10.1016/j.ijnaoe.2017.03.009 – volume: 30 start-page: 235 issue: 3–4 year: 1997 ident: 10.1016/j.marstruc.2022.103292_b17 article-title: A three dimensional multigrid model for fully nonlinear water waves publication-title: Coast Eng doi: 10.1016/S0378-3839(96)00046-4 – year: 2020 ident: 10.1016/j.marstruc.2022.103292_b49 – volume: 224 start-page: 637 issue: 2 year: 2007 ident: 10.1016/j.marstruc.2022.103292_b58 article-title: High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems publication-title: J Comput Phys doi: 10.1016/j.jcp.2006.10.017 – volume: 214 start-page: 789 issue: 6 year: 2000 ident: 10.1016/j.marstruc.2022.103292_b12 article-title: Third-order wave diffraction by a truncated circular cylinder publication-title: Proc Inst Mech Eng C doi: 10.1243/0954406001523786 – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: 10.1016/j.marstruc.2022.103292_b60 article-title: Smoothing and differentiation of data by simplified least squares procedures. publication-title: Anal Chem doi: 10.1021/ac60214a047 – volume: 16 start-page: 451 issue: 3 year: 1963 ident: 10.1016/j.marstruc.2022.103292_b4 article-title: First-and second-order forces on a cylinder submerged under a free surface publication-title: J Fluid Mech doi: 10.1017/S0022112063000896 – volume: 75 start-page: 201 year: 2018 ident: 10.1016/j.marstruc.2022.103292_b41 article-title: Weakly nonlinear modeling of submerged wave energy converters publication-title: Appl Ocean Res doi: 10.1016/j.apor.2018.03.014 – volume: 222 year: 2021 ident: 10.1016/j.marstruc.2022.103292_b43 article-title: A nonlinear potential flow model for higher-harmonic wave loads and ringing response of a monopile publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.108574 – volume: 88 start-page: 34 year: 2019 ident: 10.1016/j.marstruc.2022.103292_b28 article-title: Numerical analysis on the generation, propagation and interaction of solitary waves by a harmonic polynomial cell method publication-title: Wave Motion doi: 10.1016/j.wavemoti.2019.01.007 – volume: 69 start-page: 220 year: 2017 ident: 10.1016/j.marstruc.2022.103292_b44 article-title: Solving the linearized forward-speed radiation problem using a high-order finite difference method on overlapping grids publication-title: Appl Ocean Res doi: 10.1016/j.apor.2017.11.001 – volume: 43 start-page: 1257 issue: 10–11 year: 2003 ident: 10.1016/j.marstruc.2022.103292_b15 article-title: Non-linear time-domain models for irregular wave diffraction about offshore structures publication-title: Internat J Numer Methods Fluids doi: 10.1002/fld.506 – volume: 71 start-page: 102 year: 2013 ident: 10.1016/j.marstruc.2022.103292_b31 article-title: Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM® publication-title: Coast Eng doi: 10.1016/j.coastaleng.2012.07.002 – year: 2019 ident: 10.1016/j.marstruc.2022.103292_b48 – volume: 1960 start-page: 5 issue: 108 year: 1960 ident: 10.1016/j.marstruc.2022.103292_b65 article-title: On the increase of the resistance of a ship in rough seas publication-title: J Zosen Kiokai doi: 10.2534/jjasnaoe1952.1960.108_5 – year: 2010 ident: 10.1016/j.marstruc.2022.103292_b13 – start-page: 51:131 year: 1975 ident: 10.1016/j.marstruc.2022.103292_b66 article-title: A study on the drifting force on two-dimensional floating body in regular waves publication-title: Trans West-Japan Soc Nav Archit – volume: 118 start-page: 496 issue: 5 year: 1992 ident: 10.1016/j.marstruc.2022.103292_b7 article-title: Time-domain second-order wave diffraction in three dimensions publication-title: J Waterw Port Coast Ocean Eng doi: 10.1061/(ASCE)0733-950X(1992)118:5(496) – volume: 274 start-page: 312 year: 2014 ident: 10.1016/j.marstruc.2022.103292_b25 article-title: A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics publication-title: J Comput Phys doi: 10.1016/j.jcp.2014.06.021 – volume: 147 start-page: 449 year: 1984 ident: 10.1016/j.marstruc.2022.103292_b62 article-title: Nonlinear forces on a horizontal cylinder beneath waves publication-title: J Fluid Mech doi: 10.1017/S0022112084002160 – start-page: 15317 year: 2013 ident: 10.1016/j.marstruc.2022.103292_b2 – volume: 5 issue: 8 year: 2020 ident: 10.1016/j.marstruc.2022.103292_b50 article-title: Liquid sloshing in an upright circular tank under periodic and transient excitations publication-title: Phys Rev Fluids doi: 10.1103/PhysRevFluids.5.084801 – volume: 74 start-page: 168 year: 2013 ident: 10.1016/j.marstruc.2022.103292_b8 article-title: Simulation of second-order wave interaction with fixed and floating structures in time domain publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2013.07.014 – volume: 122 start-page: 2945 issue: 12 year: 2021 ident: 10.1016/j.marstruc.2022.103292_b29 article-title: An adaptive harmonic polynomial cell method with immersed boundaries: Accuracy, stability, and applications publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.6648 – year: 1980 ident: 10.1016/j.marstruc.2022.103292_b5 – volume: 30 start-page: 387 issue: 3 year: 2003 ident: 10.1016/j.marstruc.2022.103292_b21 article-title: The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies publication-title: Ocean Eng doi: 10.1016/S0029-8018(02)00037-9 – volume: 137 start-page: 273 year: 2017 ident: 10.1016/j.marstruc.2022.103292_b35 article-title: Reproduction of steep long crested irregular waves with CFD using the VOF method publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.10.351 – volume: 8 start-page: 188 issue: 2 year: 2016 ident: 10.1016/j.marstruc.2022.103292_b36 article-title: Numerical simulation of wave and current interaction with a fixed offshore substructure publication-title: Int J Nav Archit Ocean Eng doi: 10.1016/j.ijnaoe.2016.02.002 – volume: 221 start-page: 666 issue: 2 year: 2007 ident: 10.1016/j.marstruc.2022.103292_b23 article-title: Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method publication-title: J Comput Phys doi: 10.1016/j.jcp.2006.06.046 – volume: 22 start-page: 441 issue: 4 year: 2006 ident: 10.1016/j.marstruc.2022.103292_b22 article-title: An unstructured-mesh-based finite element simulation of wave interactions with non-wall-sided bodies publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2005.12.005 – volume: 174 start-page: 23 year: 1987 ident: 10.1016/j.marstruc.2022.103292_b64 article-title: A numerical solution of the second-order wave-diffraction problem for a submerged cylinder of arbitrary shape publication-title: J Fluid Mech doi: 10.1017/S0022112087000028 – volume: 113 start-page: 681 issue: 4 year: 2018 ident: 10.1016/j.marstruc.2022.103292_b61 article-title: Local and global properties of the harmonic polynomial cell method: In-depth analysis in two dimensions publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.5631 – volume: 228 start-page: 2100 issue: 6 year: 2009 ident: 10.1016/j.marstruc.2022.103292_b19 article-title: An efficient flexible-order model for 3D nonlinear water waves publication-title: J Comput Phys doi: 10.1016/j.jcp.2008.11.028 – volume: 13 start-page: 175 issue: 4 year: 1991 ident: 10.1016/j.marstruc.2022.103292_b6 article-title: Second order wave diffraction around two-dimensional bodies by time-domain method publication-title: Appl Ocean Res doi: 10.1016/S0141-1187(05)80073-2 – year: 2001 ident: 10.1016/j.marstruc.2022.103292_b55 – year: 2014 ident: 10.1016/j.marstruc.2022.103292_b40 article-title: Comparison of fully nonlinear and weakly nonlinear potential flow solvers for the study of wave energy converters undergoing large amplitude motions – year: 2011 ident: 10.1016/j.marstruc.2022.103292_b63 – year: 2015 ident: 10.1016/j.marstruc.2022.103292_b42 article-title: Progresses in the development of a weakly-nonlinear wave body interaction model based on the weak-scatterer approximation – year: 2020 ident: 10.1016/j.marstruc.2022.103292_b52 article-title: Numerical study towards closed fish farms in waves using two harmonic polynomial cell methods – volume: 140 start-page: 191 year: 2016 ident: 10.1016/j.marstruc.2022.103292_b33 article-title: A new level set numerical wave tank with improved density interpolation for complex wave hydrodynamics publication-title: Comput & Fluids doi: 10.1016/j.compfluid.2016.09.012 – volume: 89 start-page: 29 year: 2021 ident: 10.1016/j.marstruc.2022.103292_b54 article-title: Enhanced solution of 2D incompressible Navier–Stokes equations based on an immersed-boundary generalized harmonic polynomial cell method publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2021.04.009 – year: 2018 ident: 10.1016/j.marstruc.2022.103292_b51 article-title: A harmonic polynomial method based on cartesian grids with local refinement for complex wave-body interactions – volume: 5 start-page: 187 issn: 2311-5521 year: 2020 ident: 10.1016/j.marstruc.2022.103292_b9 article-title: Hydrodynamic responses of a 6MW spar-type floating offshore wind turbine in regular waves and uniform current publication-title: Fluids doi: 10.3390/fluids5040187 |
| SSID | ssj0017111 |
| Score | 2.369382 |
| Snippet | In this paper, a generalized weak-scatterer (GWS) approximation is proposed for solving nonlinear wave–structure interaction problems. In contrast to the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103292 |
| SubjectTerms | Adaptive harmonic polynomial cell method Generalized weak-scatterer approximation Immersed boundary method Nonlinear wave-body interaction Potential flow Stability analysis |
| Title | A generalized weak-scatterer approximation for nonlinear wave–structure interaction in marine hydrodynamics |
| URI | https://dx.doi.org/10.1016/j.marstruc.2022.103292 |
| Volume | 86 |
| WOSCitedRecordID | wos000855675900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4170 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017111 issn: 0951-8339 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuiKdaXvIBcVk5bJ5OjkvVqiC64rCCvUW249CUrqmy1bLLif_AlV_HL2EcO04WKkoPXKIoiR0782U8mcx8g9DzUvOM-bJJPwtIVCQh4ZwnpKQsEBG8XLwJonn_lk6n6XyevRsMfrS5MKszqlS6Xmfn_1XUcAyErVNnryFu1ykcgH0QOmxB7LD9J8FPdFVk7WmqvurQcsk-kaVoWDRlbSjE19WiCzFUhiuD1aMvbCXb2IfQ8MrqvwuaUKK2FcUrNVownS84OtkUoHpNOftl38I9Nudde2ezz2zw7_4J--z8OrDfLAJMD6Jz2KuPNn37iNX1ZvTK6xSlWlqf0WGlFDHcCFpJffD6Dgz49vWdA6P1RPokDQ2nUauU075W1aR_pmLeHwrf-B5OPZh8MzFP38HrGmwzbP-28rl4xDbU7TRv-8l1P7np5wbaCWicpUO0M3l9MH_j_lJRv6nv7CbQy0C_fESXGz89g2Z2B922XyJ4YhB0Fw2kuod2jxvW9nqDX-ApA1hiq_zvo8UE94CFt4GFt4CFAVjYAQtrYP389t1BAvcgBfvYQApvQeoBmh0ezPaPiC3WQUSYjC8IrBspYz5LZCR5wikPgrH047LMZCxoAGq-BFNaxmnCBdf1NyNfpOMiTsoihiU2fIiGMC65izBPM3iytIDrSzDWBS_isKB6RedRFI7FHorbh5gLS2Sv66mc5X8X4x566dqdGyqXK1tkrYxya5AaQzMH-F3R9tG17_YY3epejydoCOflU3RTrC6qZf3MYu8XPo-2bQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+weak-scatterer+approximation+for+nonlinear+wave%E2%80%93structure+interaction+in+marine+hydrodynamics&rft.jtitle=Marine+structures&rft.au=Tong%2C+Chao&rft.au=Shao%2C+Yanlin&rft.au=Bingham%2C+Harry+B.&rft.au=Hanssen%2C+Finn-Christian+W.&rft.date=2022-11-01&rft.issn=0951-8339&rft.volume=86&rft.spage=103292&rft_id=info:doi/10.1016%2Fj.marstruc.2022.103292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marstruc_2022_103292 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon |