A generalized weak-scatterer approximation for nonlinear wave–structure interaction in marine hydrodynamics

In this paper, a generalized weak-scatterer (GWS) approximation is proposed for solving nonlinear wave–structure interaction problems. In contrast to the original weak-scatterer (OWS) theory, where the approximated free surface boundary conditions (FSBCs) are Taylor-expanded in the vertical directio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Marine structures Ročník 86; s. 103292
Hlavní autoři: Tong, Chao, Shao, Yanlin, Bingham, Harry B., Hanssen, Finn-Christian W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2022
Témata:
ISSN:0951-8339, 1873-4170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a generalized weak-scatterer (GWS) approximation is proposed for solving nonlinear wave–structure interaction problems. In contrast to the original weak-scatterer (OWS) theory, where the approximated free surface boundary conditions (FSBCs) are Taylor-expanded in the vertical direction from the incident wave surface, we apply Taylor series expansion in an arbitrary direction which, in particular, is tangential to the boundary of the floating structure close to the waterline. This leads to generalized kinematic and dynamic FSBCs for the radiated and scattered waves, along with corresponding expressions of the wave loads. Accordingly, an Arbitrary Lagrangian–Eulerian (ALE) approach is adopted to track the free-surface properties. The new GWS method is more consistent than the OWS model in that the wave markers do not separate from the body surface at the waterline for structures with flare. An Immersed-Boundary Adaptive Harmonic Polynomial Cell (IB-AHPC) method is implemented to solve the corresponding boundary value problems (BVPs) for both the velocity potential and the Lagrangian acceleration potential at each time step. The new formulation introduces additional convective terms in the FSBCs, making them similar to the seakeeping problems for ships with forward speed, and this requires special treatment to avoid instability in the time-domain simulations. Based on a matrix-based eigenvalue stability analysis, we illustrate that stable solutions can be achieved by introducing an upwind-biased scheme to discretize the convective terms in the kinematic FSBC. The proposed model is verified by three wave diffraction problems in regular waves, including a submerged circular cylinder, a rounded-corner rectangular ship section, and a trapezoidal section with a large flare angle. •The weak-scatterer theory/model for nonlinear wave–structure interaction is extended to consistently deal with structures with flares.•A matrix-based stability analysis is conducted for the numerical implementation of the model.•A 3rd-order one-point upwind-biased scheme is adopted for calculating wave slope to stabilize the numerical computations.•The new model accurately predicts the displacement of the waterline and the wave loads on structures.
AbstractList In this paper, a generalized weak-scatterer (GWS) approximation is proposed for solving nonlinear wave–structure interaction problems. In contrast to the original weak-scatterer (OWS) theory, where the approximated free surface boundary conditions (FSBCs) are Taylor-expanded in the vertical direction from the incident wave surface, we apply Taylor series expansion in an arbitrary direction which, in particular, is tangential to the boundary of the floating structure close to the waterline. This leads to generalized kinematic and dynamic FSBCs for the radiated and scattered waves, along with corresponding expressions of the wave loads. Accordingly, an Arbitrary Lagrangian–Eulerian (ALE) approach is adopted to track the free-surface properties. The new GWS method is more consistent than the OWS model in that the wave markers do not separate from the body surface at the waterline for structures with flare. An Immersed-Boundary Adaptive Harmonic Polynomial Cell (IB-AHPC) method is implemented to solve the corresponding boundary value problems (BVPs) for both the velocity potential and the Lagrangian acceleration potential at each time step. The new formulation introduces additional convective terms in the FSBCs, making them similar to the seakeeping problems for ships with forward speed, and this requires special treatment to avoid instability in the time-domain simulations. Based on a matrix-based eigenvalue stability analysis, we illustrate that stable solutions can be achieved by introducing an upwind-biased scheme to discretize the convective terms in the kinematic FSBC. The proposed model is verified by three wave diffraction problems in regular waves, including a submerged circular cylinder, a rounded-corner rectangular ship section, and a trapezoidal section with a large flare angle. •The weak-scatterer theory/model for nonlinear wave–structure interaction is extended to consistently deal with structures with flares.•A matrix-based stability analysis is conducted for the numerical implementation of the model.•A 3rd-order one-point upwind-biased scheme is adopted for calculating wave slope to stabilize the numerical computations.•The new model accurately predicts the displacement of the waterline and the wave loads on structures.
ArticleNumber 103292
Author Tong, Chao
Shao, Yanlin
Hanssen, Finn-Christian W.
Bingham, Harry B.
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0002-8134-0263
  surname: Tong
  fullname: Tong, Chao
  organization: Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
– sequence: 2
  givenname: Yanlin
  orcidid: 0000-0002-9080-8438
  surname: Shao
  fullname: Shao, Yanlin
  email: yshao@mek.dtu.dk
  organization: Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
– sequence: 3
  givenname: Harry B.
  surname: Bingham
  fullname: Bingham, Harry B.
  organization: Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
– sequence: 4
  givenname: Finn-Christian W.
  surname: Hanssen
  fullname: Hanssen, Finn-Christian W.
  organization: Centre for Autonomous Marine Operations and Systems (AMOS), Department of Marine Technology, N-7491, Trondheim, Norway
BookMark eNqFkEtOAzEQRC0EEiFwBeQLTPAn45mRWBAhflIkNuwtj90DDoknaptPWHEHbshJcBLYsMmqpVa_qq46IvuhD0DIKWcjzrg6m40WBmPCFzsSTIi8lKIRe2TA60oWY16xfTJgTcmLWsrmkBzFOGOMV5zzAVlM6CMEQDP3H-DoG5jnIlqTEiAgNcsl9u9-YZLvA-16pNl77gMYpG_mFb4_vzbG6QWB-pAhYzenPtD8VD6kTyuHvVsFs_A2HpODzswjnPzOIXm4vnq4vC2m9zd3l5NpYaViqZCsrI3hRsEYWtVWrRAMeNl1DZS2EkrWnSg5lLVqbasaycbc1syVqnOlcyCHRG1lLfYxInR6iTkErjRnet2Znum_zvS6M73tLIPn_0Dr0yZ8QuPnu_GLLQ4526sH1NF6CBacR7BJu97vkvgB6hiUJA
CitedBy_id crossref_primary_10_1080_19942060_2025_2486657
crossref_primary_10_1016_j_marstruc_2023_103537
crossref_primary_10_1007_s11071_024_09943_8
crossref_primary_10_1016_j_tws_2025_113089
crossref_primary_10_1016_j_coastaleng_2022_104273
crossref_primary_10_1016_j_enganabound_2024_105870
Cites_doi 10.2534/jjasnaoe1968.1996.180_373
10.1016/j.apor.2018.08.017
10.1016/j.jcp.2015.07.026
10.1016/j.oceaneng.2016.09.017
10.1016/j.oceaneng.2008.11.003
10.1002/nme.5615
10.1007/s10665-006-9108-4
10.1061/(ASCE)WW.1943-5460.0000339
10.1016/j.euromechflu.2012.01.017
10.1017/S0022112081002851
10.1016/j.apor.2019.101913
10.1002/fld.131
10.1002/fld.2726
10.1017/S0022112095004071
10.1016/0098-3004(88)90066-0
10.1016/j.oceaneng.2006.04.009
10.1016/j.ijnaoe.2017.03.009
10.1016/S0378-3839(96)00046-4
10.1016/j.jcp.2006.10.017
10.1243/0954406001523786
10.1021/ac60214a047
10.1017/S0022112063000896
10.1016/j.apor.2018.03.014
10.1016/j.oceaneng.2021.108574
10.1016/j.wavemoti.2019.01.007
10.1016/j.apor.2017.11.001
10.1002/fld.506
10.1016/j.coastaleng.2012.07.002
10.2534/jjasnaoe1952.1960.108_5
10.1061/(ASCE)0733-950X(1992)118:5(496)
10.1016/j.jcp.2014.06.021
10.1017/S0022112084002160
10.1103/PhysRevFluids.5.084801
10.1016/j.oceaneng.2013.07.014
10.1002/nme.6648
10.1016/S0029-8018(02)00037-9
10.1016/j.egypro.2017.10.351
10.1016/j.ijnaoe.2016.02.002
10.1016/j.jcp.2006.06.046
10.1016/j.jfluidstructs.2005.12.005
10.1017/S0022112087000028
10.1002/nme.5631
10.1016/j.jcp.2008.11.028
10.1016/S0141-1187(05)80073-2
10.1016/j.compfluid.2016.09.012
10.1016/j.euromechflu.2021.04.009
10.3390/fluids5040187
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.marstruc.2022.103292
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
EISSN 1873-4170
ExternalDocumentID 10_1016_j_marstruc_2022_103292
S0951833922001289
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c360t-3058aa1a6e4eb6b7b220e15ff9e5c72638f251e586bcb693041c80d56fd5dde3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855675900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8339
IngestDate Sat Nov 29 07:08:16 EST 2025
Tue Nov 18 22:26:14 EST 2025
Fri Feb 23 02:40:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stability analysis
Adaptive harmonic polynomial cell method
Immersed boundary method
Nonlinear wave-body interaction
Generalized weak-scatterer approximation
Potential flow
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-3058aa1a6e4eb6b7b220e15ff9e5c72638f251e586bcb693041c80d56fd5dde3
ORCID 0000-0002-9080-8438
0000-0002-8134-0263
OpenAccessLink https://dx.doi.org/10.1016/j.marstruc.2022.103292
ParticipantIDs crossref_primary_10_1016_j_marstruc_2022_103292
crossref_citationtrail_10_1016_j_marstruc_2022_103292
elsevier_sciencedirect_doi_10_1016_j_marstruc_2022_103292
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Marine structures
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Flavià FF, McNatt C, Rongère F, Babarit A, Clément AH. Computation of the diffraction transfer matrix and the radiation characteristics in the open-source BEM code NEMOH. In: 35th international conference on ocean, offshore and artic engineering. 2016.
Bai, Teng (b8) 2013; 74
Tong C, Shao Y, Bingham HB. Modeling fully nonlinear wave-structure interaction by an adaptive harmonic polynomial cell method with immersed boundaries. In: 36th international workshop on water waves and floating bodies. 2021.
Ansys (b2) 2013
Chaplin (b62) 1984; 147
Li (b69) 2017
Kamath, Bihs, Alagan Chella, Arntsen (b34) 2016; 142
Shao, Zheng, Liang, Chen (b10) 2021
Shao, Faltinsen (b25) 2014; 274
Yu, Fuhrman, Shao, Liao, Duan, Zhang (b54) 2021; 89
Rienecker, Fenton (b70) 1981; 104
Kim, Kim, Park, Jeon, Chun (b36) 2016; 8
Tanizawa, Minami, Naito (b67) 1999
Koo, Kim (b68) 2007; 34
Amini-Afshar, Bingham (b44) 2017; 69
Fenton (b56) 1988; 14
Ducrozet, Bonnefoy, Le Touzé, Ferrant (b57) 2012; 34
Hu, Greaves, Raby (b32) 2016; 126
Liang, Santo, Shao, Law, Chan (b50) 2020; 5
Amini-Afshar, Bingham (b45) 2018; 80
Oggiano, Pierella, Nygaard, De Vaal, Arens (b35) 2017; 137
Guerber (b63) 2011
Vada (b64) 1987; 174
Savitzky, Golay (b60) 1964; 36
Zhang, Teng (b43) 2021; 222
Tong, Shao, Bingham, Hanssen (b29) 2021; 122
Hanssen, Bardazzi, Lugni, Greco (b27) 2018; 113
Lee (b1) 1995
Malenica, Molin (b11) 1995; 302
Engsig-Karup, Bingham, Lindberg (b19) 2009; 228
Yan, Ma (b23) 2007; 221
Letournel, Ferrant, Babarit, Ducrozet, Harris, Benoit, Dombre (b40) 2014
Isaacson, Cheung (b6) 1991; 13
Ogilvie (b4) 1963; 16
Robaux, Benoit (b49) 2020
Bingham, Zhang (b18) 2007; 58
Wuillaume, Ferrant, Babarit, Lynch (b39) 2019
Hanssen, Greco, Shao (b26) 2015
Jacobsen, Fuhrman, Fredsøe (b30) 2012; 70
Wang, Faltinsen (b51) 2018
Kim, Kim (b38) 2009
Shen, Marilena, Faltinsen, Ma (b52) 2020
Nojiri, Murayama (b66) 1975
Wang, Wu (b22) 2006; 22
Greco (b55) 2001
Isaacson, Cheung (b7) 1992; 118
Ma, Wu, Eatock Taylor (b20) 2001; 36
Pinkster (b5) 1980
Kashiwagi (b14) 1996; 1996
Shao (b13) 2010
Higuera, Lara, Losada (b31) 2013; 71
Tong, Shao, Hanssen, Li, Xie, Lin (b28) 2019; 88
Amini-Afshar, Bingham, Henshaw (b46) 2019; 92
Bihs, Kamath, Chella, Aggarwal, Arntsen (b33) 2016; 140
Bai, Eatock Taylor (b16) 2009; 36
Hanssen (b48) 2019
Shao, Faltinsen (b24) 2012
Ma, Hanssen, Siddiqui, Greco, Faltinsen (b61) 2018; 113
Wu, Eatock Taylor (b21) 2003; 30
Berland, Bogey, Marsden, Bailly (b58) 2007; 224
Bardazzi, Lugni, Antuono, Graziani, Faltinsen (b53) 2015; 299
Kinoshita, Bao (b12) 2000; 214
Chauvigné, Letournel, Babarit, Ducrozet, Bozonnet, Gilloteaux, Ferrant (b42) 2015
Ferrant, Touzé, Pelletier (b15) 2003; 43
Letournel, Chauvigné, Gelly, Babarit, Ducrozet, Ferrant (b41) 2018; 75
Pawlowski (b37) 1994
Maruo (b65) 1960; 1960
Zhu, Greco, Shao (b47) 2017; 9
Li, Fleming (b17) 1997; 30
Zheng, Chen, Liang, Zhao, Shao (b9) 2020; 5
Bai (10.1016/j.marstruc.2022.103292_b16) 2009; 36
Rienecker (10.1016/j.marstruc.2022.103292_b70) 1981; 104
Shen (10.1016/j.marstruc.2022.103292_b52) 2020
Hanssen (10.1016/j.marstruc.2022.103292_b27) 2018; 113
Kim (10.1016/j.marstruc.2022.103292_b38) 2009
Letournel (10.1016/j.marstruc.2022.103292_b41) 2018; 75
Shao (10.1016/j.marstruc.2022.103292_b25) 2014; 274
Chaplin (10.1016/j.marstruc.2022.103292_b62) 1984; 147
Oggiano (10.1016/j.marstruc.2022.103292_b35) 2017; 137
Robaux (10.1016/j.marstruc.2022.103292_b49) 2020
Shao (10.1016/j.marstruc.2022.103292_b10) 2021
Savitzky (10.1016/j.marstruc.2022.103292_b60) 1964; 36
Tanizawa (10.1016/j.marstruc.2022.103292_b67) 1999
Amini-Afshar (10.1016/j.marstruc.2022.103292_b46) 2019; 92
Berland (10.1016/j.marstruc.2022.103292_b58) 2007; 224
Amini-Afshar (10.1016/j.marstruc.2022.103292_b44) 2017; 69
Pinkster (10.1016/j.marstruc.2022.103292_b5) 1980
Li (10.1016/j.marstruc.2022.103292_b17) 1997; 30
Tong (10.1016/j.marstruc.2022.103292_b28) 2019; 88
Zhu (10.1016/j.marstruc.2022.103292_b47) 2017; 9
Nojiri (10.1016/j.marstruc.2022.103292_b66) 1975
Kamath (10.1016/j.marstruc.2022.103292_b34) 2016; 142
Hu (10.1016/j.marstruc.2022.103292_b32) 2016; 126
Hanssen (10.1016/j.marstruc.2022.103292_b48) 2019
Higuera (10.1016/j.marstruc.2022.103292_b31) 2013; 71
Wuillaume (10.1016/j.marstruc.2022.103292_b39) 2019
Malenica (10.1016/j.marstruc.2022.103292_b11) 1995; 302
Koo (10.1016/j.marstruc.2022.103292_b68) 2007; 34
Kashiwagi (10.1016/j.marstruc.2022.103292_b14) 1996; 1996
Zhang (10.1016/j.marstruc.2022.103292_b43) 2021; 222
Ferrant (10.1016/j.marstruc.2022.103292_b15) 2003; 43
Bingham (10.1016/j.marstruc.2022.103292_b18) 2007; 58
Engsig-Karup (10.1016/j.marstruc.2022.103292_b19) 2009; 228
Yan (10.1016/j.marstruc.2022.103292_b23) 2007; 221
Guerber (10.1016/j.marstruc.2022.103292_b63) 2011
Ogilvie (10.1016/j.marstruc.2022.103292_b4) 1963; 16
Amini-Afshar (10.1016/j.marstruc.2022.103292_b45) 2018; 80
Ducrozet (10.1016/j.marstruc.2022.103292_b57) 2012; 34
Yu (10.1016/j.marstruc.2022.103292_b54) 2021; 89
Kim (10.1016/j.marstruc.2022.103292_b36) 2016; 8
Bai (10.1016/j.marstruc.2022.103292_b8) 2013; 74
Kinoshita (10.1016/j.marstruc.2022.103292_b12) 2000; 214
Greco (10.1016/j.marstruc.2022.103292_b55) 2001
Chauvigné (10.1016/j.marstruc.2022.103292_b42) 2015
Liang (10.1016/j.marstruc.2022.103292_b50) 2020; 5
Vada (10.1016/j.marstruc.2022.103292_b64) 1987; 174
Bihs (10.1016/j.marstruc.2022.103292_b33) 2016; 140
Letournel (10.1016/j.marstruc.2022.103292_b40) 2014
Fenton (10.1016/j.marstruc.2022.103292_b56) 1988; 14
Hanssen (10.1016/j.marstruc.2022.103292_b26) 2015
Tong (10.1016/j.marstruc.2022.103292_b29) 2021; 122
Ma (10.1016/j.marstruc.2022.103292_b61) 2018; 113
Bardazzi (10.1016/j.marstruc.2022.103292_b53) 2015; 299
Ansys (10.1016/j.marstruc.2022.103292_b2) 2013
Wu (10.1016/j.marstruc.2022.103292_b21) 2003; 30
Ma (10.1016/j.marstruc.2022.103292_b20) 2001; 36
10.1016/j.marstruc.2022.103292_b59
Shao (10.1016/j.marstruc.2022.103292_b24) 2012
Wang (10.1016/j.marstruc.2022.103292_b51) 2018
Maruo (10.1016/j.marstruc.2022.103292_b65) 1960; 1960
Li (10.1016/j.marstruc.2022.103292_b69) 2017
Shao (10.1016/j.marstruc.2022.103292_b13) 2010
Lee (10.1016/j.marstruc.2022.103292_b1) 1995
Zheng (10.1016/j.marstruc.2022.103292_b9) 2020; 5
Isaacson (10.1016/j.marstruc.2022.103292_b7) 1992; 118
Isaacson (10.1016/j.marstruc.2022.103292_b6) 1991; 13
Wang (10.1016/j.marstruc.2022.103292_b22) 2006; 22
Jacobsen (10.1016/j.marstruc.2022.103292_b30) 2012; 70
10.1016/j.marstruc.2022.103292_b3
Pawlowski (10.1016/j.marstruc.2022.103292_b37) 1994
References_xml – start-page: 369
  year: 2012
  end-page: 380
  ident: b24
  article-title: Towards efficient fully-nonlinear potential-flow solvers in marine hydrodynamics
  publication-title: ASME 2012 31st international conference on ocean, offshore and arctic engineering
– volume: 89
  start-page: 29
  year: 2021
  end-page: 44
  ident: b54
  article-title: Enhanced solution of 2D incompressible Navier–Stokes equations based on an immersed-boundary generalized harmonic polynomial cell method
  publication-title: Eur J Mech B Fluids
– year: 2021
  ident: b10
  article-title: A consistent second-order hydrodynamic model in the time domain for floating structures with large horizontal motions
  publication-title: Comput-Aided Civ Infrastruct Eng
– volume: 30
  start-page: 235
  year: 1997
  end-page: 258
  ident: b17
  article-title: A three dimensional multigrid model for fully nonlinear water waves
  publication-title: Coast Eng
– volume: 58
  start-page: 211
  year: 2007
  end-page: 228
  ident: b18
  article-title: On the accuracy of finite-difference solutions for nonlinear water waves
  publication-title: J Eng Math
– volume: 104
  start-page: 119
  year: 1981
  end-page: 137
  ident: b70
  article-title: A Fourier approximation method for steady water waves
  publication-title: J Fluid Mech
– volume: 113
  start-page: 311
  year: 2018
  end-page: 351
  ident: b27
  article-title: Free-surface tracking in 2D with the harmonic polynomial cell method: Two alternative strategies
  publication-title: Internat J Numer Methods Engrg
– year: 1994
  ident: b37
  article-title: A nonlinear theory of ship motion in waves
– start-page: 51:131
  year: 1975
  end-page: 152
  ident: b66
  article-title: A study on the drifting force on two-dimensional floating body in regular waves
  publication-title: Trans West-Japan Soc Nav Archit
– volume: 214
  start-page: 789
  year: 2000
  end-page: 800
  ident: b12
  article-title: Third-order wave diffraction by a truncated circular cylinder
  publication-title: Proc Inst Mech Eng C
– year: 2001
  ident: b55
  article-title: A two-dimensional study of green-water loading (Ph. D. dissertation)
– volume: 36
  start-page: 223
  year: 2009
  end-page: 236
  ident: b16
  article-title: Fully nonlinear simulation of wave interaction with fixed and floating flared structures
  publication-title: Ocean Eng
– volume: 34
  start-page: 19
  year: 2012
  end-page: 34
  ident: b57
  article-title: A modified high-order spectral method for wavemaker modeling in a numerical wave tank
  publication-title: Eur J Mech B Fluids
– volume: 5
  year: 2020
  ident: b50
  article-title: Liquid sloshing in an upright circular tank under periodic and transient excitations
  publication-title: Phys Rev Fluids
– volume: 88
  start-page: 34
  year: 2019
  end-page: 56
  ident: b28
  article-title: Numerical analysis on the generation, propagation and interaction of solitary waves by a harmonic polynomial cell method
  publication-title: Wave Motion
– volume: 8
  start-page: 188
  year: 2016
  end-page: 197
  ident: b36
  article-title: Numerical simulation of wave and current interaction with a fixed offshore substructure
  publication-title: Int J Nav Archit Ocean Eng
– volume: 13
  start-page: 175
  year: 1991
  end-page: 186
  ident: b6
  article-title: Second order wave diffraction around two-dimensional bodies by time-domain method
  publication-title: Appl Ocean Res
– volume: 36
  start-page: 265
  year: 2001
  end-page: 285
  ident: b20
  article-title: Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1: Methodology and numerical procedure
  publication-title: Internat J Numer Methods Fluids
– volume: 126
  start-page: 329
  year: 2016
  end-page: 342
  ident: b32
  article-title: Numerical wave tank study of extreme waves and wave-structure interaction using OpenFoam®
  publication-title: Ocean Eng
– year: 2020
  ident: b52
  article-title: Numerical study towards closed fish farms in waves using two harmonic polynomial cell methods
  publication-title: Proceedings of 35th international workshop on water waves and floating bodies
– volume: 16
  start-page: 451
  year: 1963
  end-page: 472
  ident: b4
  article-title: First-and second-order forces on a cylinder submerged under a free surface
  publication-title: J Fluid Mech
– volume: 140
  start-page: 191
  year: 2016
  end-page: 208
  ident: b33
  article-title: A new level set numerical wave tank with improved density interpolation for complex wave hydrodynamics
  publication-title: Comput & Fluids
– volume: 1960
  start-page: 5
  year: 1960
  end-page: 13
  ident: b65
  article-title: On the increase of the resistance of a ship in rough seas
  publication-title: J Zosen Kiokai
– volume: 43
  start-page: 1257
  year: 2003
  end-page: 1277
  ident: b15
  article-title: Non-linear time-domain models for irregular wave diffraction about offshore structures
  publication-title: Internat J Numer Methods Fluids
– volume: 122
  start-page: 2945
  year: 2021
  end-page: 2980
  ident: b29
  article-title: An adaptive harmonic polynomial cell method with immersed boundaries: Accuracy, stability, and applications
  publication-title: Internat J Numer Methods Engrg
– volume: 80
  start-page: 197
  year: 2018
  end-page: 219
  ident: b45
  article-title: Pseudo-impulsive solutions of the forward-speed diffraction problem using a high-order finite-difference method
  publication-title: Appl Ocean Res
– year: 2009
  ident: b38
  article-title: Time-domain analysis of nonlinear ship motion responses based on weak-scatterer hypothesis
  publication-title: The nineteenth international offshore and polar engineering conference
– volume: 222
  year: 2021
  ident: b43
  article-title: A nonlinear potential flow model for higher-harmonic wave loads and ringing response of a monopile
  publication-title: Ocean Eng
– volume: 74
  start-page: 168
  year: 2013
  end-page: 177
  ident: b8
  article-title: Simulation of second-order wave interaction with fixed and floating structures in time domain
  publication-title: Ocean Eng
– volume: 75
  start-page: 201
  year: 2018
  end-page: 222
  ident: b41
  article-title: Weakly nonlinear modeling of submerged wave energy converters
  publication-title: Appl Ocean Res
– volume: 228
  start-page: 2100
  year: 2009
  end-page: 2118
  ident: b19
  article-title: An efficient flexible-order model for 3D nonlinear water waves
  publication-title: J Comput Phys
– volume: 69
  start-page: 220
  year: 2017
  end-page: 244
  ident: b44
  article-title: Solving the linearized forward-speed radiation problem using a high-order finite difference method on overlapping grids
  publication-title: Appl Ocean Res
– volume: 14
  start-page: 357
  year: 1988
  end-page: 368
  ident: b56
  article-title: The numerical solution of steady water wave problems
  publication-title: Comput Geosci
– volume: 9
  start-page: 598
  year: 2017
  end-page: 612
  ident: b47
  article-title: Improved HPC method for nonlinear wave tank
  publication-title: Int J Nav Archit Ocean Eng
– volume: 274
  start-page: 312
  year: 2014
  end-page: 332
  ident: b25
  article-title: A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics
  publication-title: J Comput Phys
– volume: 70
  start-page: 1073
  year: 2012
  end-page: 1088
  ident: b30
  article-title: A wave generation toolbox for the open-source CFD library: OpenFoam®
  publication-title: Internat J Numer Methods Fluids
– reference: Tong C, Shao Y, Bingham HB. Modeling fully nonlinear wave-structure interaction by an adaptive harmonic polynomial cell method with immersed boundaries. In: 36th international workshop on water waves and floating bodies. 2021.
– volume: 174
  start-page: 23
  year: 1987
  end-page: 37
  ident: b64
  article-title: A numerical solution of the second-order wave-diffraction problem for a submerged cylinder of arbitrary shape
  publication-title: J Fluid Mech
– volume: 30
  start-page: 387
  year: 2003
  end-page: 400
  ident: b21
  article-title: The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies
  publication-title: Ocean Eng
– volume: 92
  year: 2019
  ident: b46
  article-title: Stability analysis of high-order finite-difference discretizations of the linearized forward-speed seakeeping problem
  publication-title: Appl Ocean Res
– year: 2017
  ident: b69
  article-title: Fully nonlinear numerical simulations of wave interactions with multiple structures at resonance
– year: 2019
  ident: b48
  article-title: Non-linear wave-body interaction in severe waves
– year: 2018
  ident: b51
  article-title: A harmonic polynomial method based on cartesian grids with local refinement for complex wave-body interactions
  publication-title: Proceedings of 33rd international workshop on water waves and floating bodies
– volume: 1996
  start-page: 373
  year: 1996
  end-page: 381
  ident: b14
  article-title: Full-nonlinear simulations of hydrodynamic forces on a heaving two-dimensional body
  publication-title: J Soc Nav Archit Jpn
– year: 2015
  ident: b26
  article-title: The harmonic polynomial cell method for moving bodies immersed in a cartesian background grid
  publication-title: ASME 2015 34th international conference on ocean, offshore and arctic engineering
– year: 2011
  ident: b63
  article-title: Modélisation numérique des interactions non-linéaires entre vagues et structures immergées, appliquéea la simulation de systemes houlomoteurs
– volume: 113
  start-page: 681
  year: 2018
  end-page: 718
  ident: b61
  article-title: Local and global properties of the harmonic polynomial cell method: In-depth analysis in two dimensions
  publication-title: Internat J Numer Methods Engrg
– year: 1980
  ident: b5
  article-title: Low frequency second order wave exciting forces on floating structures
– volume: 22
  start-page: 441
  year: 2006
  end-page: 461
  ident: b22
  article-title: An unstructured-mesh-based finite element simulation of wave interactions with non-wall-sided bodies
  publication-title: J Fluids Struct
– volume: 142
  year: 2016
  ident: b34
  article-title: Upstream-cylinder and downstream-cylinder influence on the hydrodynamics of a four-cylinder group
  publication-title: J Waterw Port Coast Ocean Eng
– year: 2015
  ident: b42
  article-title: Progresses in the development of a weakly-nonlinear wave body interaction model based on the weak-scatterer approximation
  publication-title: International conference on offshore mechanics and arctic engineering, vol. 56574
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: b60
  article-title: Smoothing and differentiation of data by simplified least squares procedures.
  publication-title: Anal Chem
– volume: 224
  start-page: 637
  year: 2007
  end-page: 662
  ident: b58
  article-title: High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems
  publication-title: J Comput Phys
– year: 1995
  ident: b1
  article-title: WAMIT theory manual
– volume: 5
  start-page: 187
  year: 2020
  ident: b9
  article-title: Hydrodynamic responses of a 6MW spar-type floating offshore wind turbine in regular waves and uniform current
  publication-title: Fluids
– reference: Flavià FF, McNatt C, Rongère F, Babarit A, Clément AH. Computation of the diffraction transfer matrix and the radiation characteristics in the open-source BEM code NEMOH. In: 35th international conference on ocean, offshore and artic engineering. 2016.
– year: 2019
  ident: b39
  article-title: Development of a panel cutting method coupled with an unsteady potential flow model based on the weak-scatterer approximation
  publication-title: International conference on offshore mechanics and arctic engineering, vol. 58899
– volume: 71
  start-page: 102
  year: 2013
  end-page: 118
  ident: b31
  article-title: Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM®
  publication-title: Coast Eng
– year: 2010
  ident: b13
  article-title: Numerical potential-flow studies on weakly-nonlinear wave-body interactions with/without small forward speeds
– year: 2020
  ident: b49
  article-title: Development and validation of a numerical wave tank based on the harmonic polynomial cell and immersed boundary methods to model nonlinear wave-structure interaction
– year: 1999
  ident: b67
  article-title: Estimation of wave drift force by numerical wave tank
  publication-title: The ninth international offshore and polar engineering conference
– volume: 299
  start-page: 630
  year: 2015
  end-page: 648
  ident: b53
  article-title: Generalized HPC method for the Poisson equation
  publication-title: J Comput Phys
– volume: 34
  start-page: 1000
  year: 2007
  end-page: 1012
  ident: b68
  article-title: Fully nonlinear wave-body interactions with surface-piercing bodies
  publication-title: Ocean Eng
– year: 2014
  ident: b40
  article-title: Comparison of fully nonlinear and weakly nonlinear potential flow solvers for the study of wave energy converters undergoing large amplitude motions
  publication-title: International conference on offshore mechanics and arctic engineering, vol. 45547
– volume: 137
  start-page: 273
  year: 2017
  end-page: 281
  ident: b35
  article-title: Reproduction of steep long crested irregular waves with CFD using the VOF method
  publication-title: Energy Procedia
– volume: 118
  start-page: 496
  year: 1992
  end-page: 516
  ident: b7
  article-title: Time-domain second-order wave diffraction in three dimensions
  publication-title: J Waterw Port Coast Ocean Eng
– volume: 221
  start-page: 666
  year: 2007
  end-page: 692
  ident: b23
  article-title: Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method
  publication-title: J Comput Phys
– volume: 302
  start-page: 203
  year: 1995
  end-page: 229
  ident: b11
  article-title: Third-harmonic wave diffraction by a vertical cylinder
  publication-title: J Fluid Mech
– volume: 147
  start-page: 449
  year: 1984
  end-page: 464
  ident: b62
  article-title: Nonlinear forces on a horizontal cylinder beneath waves
  publication-title: J Fluid Mech
– start-page: 15317
  year: 2013
  ident: b2
  article-title: AQWA theory manual
– start-page: 369
  year: 2012
  ident: 10.1016/j.marstruc.2022.103292_b24
  article-title: Towards efficient fully-nonlinear potential-flow solvers in marine hydrodynamics
– ident: 10.1016/j.marstruc.2022.103292_b3
– volume: 1996
  start-page: 373
  issue: 180
  year: 1996
  ident: 10.1016/j.marstruc.2022.103292_b14
  article-title: Full-nonlinear simulations of hydrodynamic forces on a heaving two-dimensional body
  publication-title: J Soc Nav Archit Jpn
  doi: 10.2534/jjasnaoe1968.1996.180_373
– year: 1999
  ident: 10.1016/j.marstruc.2022.103292_b67
  article-title: Estimation of wave drift force by numerical wave tank
– year: 2009
  ident: 10.1016/j.marstruc.2022.103292_b38
  article-title: Time-domain analysis of nonlinear ship motion responses based on weak-scatterer hypothesis
– volume: 80
  start-page: 197
  year: 2018
  ident: 10.1016/j.marstruc.2022.103292_b45
  article-title: Pseudo-impulsive solutions of the forward-speed diffraction problem using a high-order finite-difference method
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2018.08.017
– volume: 299
  start-page: 630
  year: 2015
  ident: 10.1016/j.marstruc.2022.103292_b53
  article-title: Generalized HPC method for the Poisson equation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2015.07.026
– year: 2015
  ident: 10.1016/j.marstruc.2022.103292_b26
  article-title: The harmonic polynomial cell method for moving bodies immersed in a cartesian background grid
– volume: 126
  start-page: 329
  year: 2016
  ident: 10.1016/j.marstruc.2022.103292_b32
  article-title: Numerical wave tank study of extreme waves and wave-structure interaction using OpenFoam®
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2016.09.017
– ident: 10.1016/j.marstruc.2022.103292_b59
– volume: 36
  start-page: 223
  issn: 0029-8018
  issue: 3”
  year: 2009
  ident: 10.1016/j.marstruc.2022.103292_b16
  article-title: Fully nonlinear simulation of wave interaction with fixed and floating flared structures
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2008.11.003
– volume: 113
  start-page: 311
  issue: 2
  year: 2018
  ident: 10.1016/j.marstruc.2022.103292_b27
  article-title: Free-surface tracking in 2D with the harmonic polynomial cell method: Two alternative strategies
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.5615
– volume: 58
  start-page: 211
  issue: 1–4
  year: 2007
  ident: 10.1016/j.marstruc.2022.103292_b18
  article-title: On the accuracy of finite-difference solutions for nonlinear water waves
  publication-title: J Eng Math
  doi: 10.1007/s10665-006-9108-4
– volume: 142
  issue: 4
  year: 2016
  ident: 10.1016/j.marstruc.2022.103292_b34
  article-title: Upstream-cylinder and downstream-cylinder influence on the hydrodynamics of a four-cylinder group
  publication-title: J Waterw Port Coast Ocean Eng
  doi: 10.1061/(ASCE)WW.1943-5460.0000339
– year: 2021
  ident: 10.1016/j.marstruc.2022.103292_b10
  article-title: A consistent second-order hydrodynamic model in the time domain for floating structures with large horizontal motions
  publication-title: Comput-Aided Civ Infrastruct Eng
– year: 2019
  ident: 10.1016/j.marstruc.2022.103292_b39
  article-title: Development of a panel cutting method coupled with an unsteady potential flow model based on the weak-scatterer approximation
– volume: 34
  start-page: 19
  year: 2012
  ident: 10.1016/j.marstruc.2022.103292_b57
  article-title: A modified high-order spectral method for wavemaker modeling in a numerical wave tank
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2012.01.017
– volume: 104
  start-page: 119
  year: 1981
  ident: 10.1016/j.marstruc.2022.103292_b70
  article-title: A Fourier approximation method for steady water waves
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112081002851
– year: 1995
  ident: 10.1016/j.marstruc.2022.103292_b1
– year: 1994
  ident: 10.1016/j.marstruc.2022.103292_b37
– volume: 92
  year: 2019
  ident: 10.1016/j.marstruc.2022.103292_b46
  article-title: Stability analysis of high-order finite-difference discretizations of the linearized forward-speed seakeeping problem
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2019.101913
– year: 2017
  ident: 10.1016/j.marstruc.2022.103292_b69
– volume: 36
  start-page: 265
  issue: 3
  year: 2001
  ident: 10.1016/j.marstruc.2022.103292_b20
  article-title: Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1: Methodology and numerical procedure
  publication-title: Internat J Numer Methods Fluids
  doi: 10.1002/fld.131
– volume: 70
  start-page: 1073
  issue: 9
  year: 2012
  ident: 10.1016/j.marstruc.2022.103292_b30
  article-title: A wave generation toolbox for the open-source CFD library: OpenFoam®
  publication-title: Internat J Numer Methods Fluids
  doi: 10.1002/fld.2726
– volume: 302
  start-page: 203
  year: 1995
  ident: 10.1016/j.marstruc.2022.103292_b11
  article-title: Third-harmonic wave diffraction by a vertical cylinder
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112095004071
– volume: 14
  start-page: 357
  issue: 3
  year: 1988
  ident: 10.1016/j.marstruc.2022.103292_b56
  article-title: The numerical solution of steady water wave problems
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(88)90066-0
– volume: 34
  start-page: 1000
  issue: 7
  year: 2007
  ident: 10.1016/j.marstruc.2022.103292_b68
  article-title: Fully nonlinear wave-body interactions with surface-piercing bodies
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2006.04.009
– volume: 9
  start-page: 598
  issue: 6
  year: 2017
  ident: 10.1016/j.marstruc.2022.103292_b47
  article-title: Improved HPC method for nonlinear wave tank
  publication-title: Int J Nav Archit Ocean Eng
  doi: 10.1016/j.ijnaoe.2017.03.009
– volume: 30
  start-page: 235
  issue: 3–4
  year: 1997
  ident: 10.1016/j.marstruc.2022.103292_b17
  article-title: A three dimensional multigrid model for fully nonlinear water waves
  publication-title: Coast Eng
  doi: 10.1016/S0378-3839(96)00046-4
– year: 2020
  ident: 10.1016/j.marstruc.2022.103292_b49
– volume: 224
  start-page: 637
  issue: 2
  year: 2007
  ident: 10.1016/j.marstruc.2022.103292_b58
  article-title: High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2006.10.017
– volume: 214
  start-page: 789
  issue: 6
  year: 2000
  ident: 10.1016/j.marstruc.2022.103292_b12
  article-title: Third-order wave diffraction by a truncated circular cylinder
  publication-title: Proc Inst Mech Eng C
  doi: 10.1243/0954406001523786
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.marstruc.2022.103292_b60
  article-title: Smoothing and differentiation of data by simplified least squares procedures.
  publication-title: Anal Chem
  doi: 10.1021/ac60214a047
– volume: 16
  start-page: 451
  issue: 3
  year: 1963
  ident: 10.1016/j.marstruc.2022.103292_b4
  article-title: First-and second-order forces on a cylinder submerged under a free surface
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112063000896
– volume: 75
  start-page: 201
  year: 2018
  ident: 10.1016/j.marstruc.2022.103292_b41
  article-title: Weakly nonlinear modeling of submerged wave energy converters
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2018.03.014
– volume: 222
  year: 2021
  ident: 10.1016/j.marstruc.2022.103292_b43
  article-title: A nonlinear potential flow model for higher-harmonic wave loads and ringing response of a monopile
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.108574
– volume: 88
  start-page: 34
  year: 2019
  ident: 10.1016/j.marstruc.2022.103292_b28
  article-title: Numerical analysis on the generation, propagation and interaction of solitary waves by a harmonic polynomial cell method
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2019.01.007
– volume: 69
  start-page: 220
  year: 2017
  ident: 10.1016/j.marstruc.2022.103292_b44
  article-title: Solving the linearized forward-speed radiation problem using a high-order finite difference method on overlapping grids
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2017.11.001
– volume: 43
  start-page: 1257
  issue: 10–11
  year: 2003
  ident: 10.1016/j.marstruc.2022.103292_b15
  article-title: Non-linear time-domain models for irregular wave diffraction about offshore structures
  publication-title: Internat J Numer Methods Fluids
  doi: 10.1002/fld.506
– volume: 71
  start-page: 102
  year: 2013
  ident: 10.1016/j.marstruc.2022.103292_b31
  article-title: Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM®
  publication-title: Coast Eng
  doi: 10.1016/j.coastaleng.2012.07.002
– year: 2019
  ident: 10.1016/j.marstruc.2022.103292_b48
– volume: 1960
  start-page: 5
  issue: 108
  year: 1960
  ident: 10.1016/j.marstruc.2022.103292_b65
  article-title: On the increase of the resistance of a ship in rough seas
  publication-title: J Zosen Kiokai
  doi: 10.2534/jjasnaoe1952.1960.108_5
– year: 2010
  ident: 10.1016/j.marstruc.2022.103292_b13
– start-page: 51:131
  year: 1975
  ident: 10.1016/j.marstruc.2022.103292_b66
  article-title: A study on the drifting force on two-dimensional floating body in regular waves
  publication-title: Trans West-Japan Soc Nav Archit
– volume: 118
  start-page: 496
  issue: 5
  year: 1992
  ident: 10.1016/j.marstruc.2022.103292_b7
  article-title: Time-domain second-order wave diffraction in three dimensions
  publication-title: J Waterw Port Coast Ocean Eng
  doi: 10.1061/(ASCE)0733-950X(1992)118:5(496)
– volume: 274
  start-page: 312
  year: 2014
  ident: 10.1016/j.marstruc.2022.103292_b25
  article-title: A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.06.021
– volume: 147
  start-page: 449
  year: 1984
  ident: 10.1016/j.marstruc.2022.103292_b62
  article-title: Nonlinear forces on a horizontal cylinder beneath waves
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112084002160
– start-page: 15317
  year: 2013
  ident: 10.1016/j.marstruc.2022.103292_b2
– volume: 5
  issue: 8
  year: 2020
  ident: 10.1016/j.marstruc.2022.103292_b50
  article-title: Liquid sloshing in an upright circular tank under periodic and transient excitations
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.5.084801
– volume: 74
  start-page: 168
  year: 2013
  ident: 10.1016/j.marstruc.2022.103292_b8
  article-title: Simulation of second-order wave interaction with fixed and floating structures in time domain
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2013.07.014
– volume: 122
  start-page: 2945
  issue: 12
  year: 2021
  ident: 10.1016/j.marstruc.2022.103292_b29
  article-title: An adaptive harmonic polynomial cell method with immersed boundaries: Accuracy, stability, and applications
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.6648
– year: 1980
  ident: 10.1016/j.marstruc.2022.103292_b5
– volume: 30
  start-page: 387
  issue: 3
  year: 2003
  ident: 10.1016/j.marstruc.2022.103292_b21
  article-title: The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies
  publication-title: Ocean Eng
  doi: 10.1016/S0029-8018(02)00037-9
– volume: 137
  start-page: 273
  year: 2017
  ident: 10.1016/j.marstruc.2022.103292_b35
  article-title: Reproduction of steep long crested irregular waves with CFD using the VOF method
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.10.351
– volume: 8
  start-page: 188
  issue: 2
  year: 2016
  ident: 10.1016/j.marstruc.2022.103292_b36
  article-title: Numerical simulation of wave and current interaction with a fixed offshore substructure
  publication-title: Int J Nav Archit Ocean Eng
  doi: 10.1016/j.ijnaoe.2016.02.002
– volume: 221
  start-page: 666
  issue: 2
  year: 2007
  ident: 10.1016/j.marstruc.2022.103292_b23
  article-title: Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2006.06.046
– volume: 22
  start-page: 441
  issue: 4
  year: 2006
  ident: 10.1016/j.marstruc.2022.103292_b22
  article-title: An unstructured-mesh-based finite element simulation of wave interactions with non-wall-sided bodies
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2005.12.005
– volume: 174
  start-page: 23
  year: 1987
  ident: 10.1016/j.marstruc.2022.103292_b64
  article-title: A numerical solution of the second-order wave-diffraction problem for a submerged cylinder of arbitrary shape
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112087000028
– volume: 113
  start-page: 681
  issue: 4
  year: 2018
  ident: 10.1016/j.marstruc.2022.103292_b61
  article-title: Local and global properties of the harmonic polynomial cell method: In-depth analysis in two dimensions
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.5631
– volume: 228
  start-page: 2100
  issue: 6
  year: 2009
  ident: 10.1016/j.marstruc.2022.103292_b19
  article-title: An efficient flexible-order model for 3D nonlinear water waves
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2008.11.028
– volume: 13
  start-page: 175
  issue: 4
  year: 1991
  ident: 10.1016/j.marstruc.2022.103292_b6
  article-title: Second order wave diffraction around two-dimensional bodies by time-domain method
  publication-title: Appl Ocean Res
  doi: 10.1016/S0141-1187(05)80073-2
– year: 2001
  ident: 10.1016/j.marstruc.2022.103292_b55
– year: 2014
  ident: 10.1016/j.marstruc.2022.103292_b40
  article-title: Comparison of fully nonlinear and weakly nonlinear potential flow solvers for the study of wave energy converters undergoing large amplitude motions
– year: 2011
  ident: 10.1016/j.marstruc.2022.103292_b63
– year: 2015
  ident: 10.1016/j.marstruc.2022.103292_b42
  article-title: Progresses in the development of a weakly-nonlinear wave body interaction model based on the weak-scatterer approximation
– year: 2020
  ident: 10.1016/j.marstruc.2022.103292_b52
  article-title: Numerical study towards closed fish farms in waves using two harmonic polynomial cell methods
– volume: 140
  start-page: 191
  year: 2016
  ident: 10.1016/j.marstruc.2022.103292_b33
  article-title: A new level set numerical wave tank with improved density interpolation for complex wave hydrodynamics
  publication-title: Comput & Fluids
  doi: 10.1016/j.compfluid.2016.09.012
– volume: 89
  start-page: 29
  year: 2021
  ident: 10.1016/j.marstruc.2022.103292_b54
  article-title: Enhanced solution of 2D incompressible Navier–Stokes equations based on an immersed-boundary generalized harmonic polynomial cell method
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2021.04.009
– year: 2018
  ident: 10.1016/j.marstruc.2022.103292_b51
  article-title: A harmonic polynomial method based on cartesian grids with local refinement for complex wave-body interactions
– volume: 5
  start-page: 187
  issn: 2311-5521
  year: 2020
  ident: 10.1016/j.marstruc.2022.103292_b9
  article-title: Hydrodynamic responses of a 6MW spar-type floating offshore wind turbine in regular waves and uniform current
  publication-title: Fluids
  doi: 10.3390/fluids5040187
SSID ssj0017111
Score 2.369293
Snippet In this paper, a generalized weak-scatterer (GWS) approximation is proposed for solving nonlinear wave–structure interaction problems. In contrast to the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103292
SubjectTerms Adaptive harmonic polynomial cell method
Generalized weak-scatterer approximation
Immersed boundary method
Nonlinear wave-body interaction
Potential flow
Stability analysis
Title A generalized weak-scatterer approximation for nonlinear wave–structure interaction in marine hydrodynamics
URI https://dx.doi.org/10.1016/j.marstruc.2022.103292
Volume 86
WOSCitedRecordID wos000855675900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017111
  issn: 0951-8339
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4EL4lMbX_IBcakcmg_HzrFMmwZiFYdK9BbZjsu6rWFKp9Jy4n_gyl_HX8Jz7DgpTIwdODSKEtmx8359fn557_cQelkUPOUZUySRGSMJF4pIQSWBHy8EzWLO6kTh92w85tNp9qHX-9HkwqzOWVny9Tq7-K-ihmsgbJM6ewNx-07hApyD0OEIYofjPwl-ZKoiG0_T_KsJLdfijCxVzaKpK0shvp4v2hDD0nJliGrwRax0E_sQW15Z83XBEEpUrqL4vBwshMkXHJxsClC9tpz9smvhHtv7vr232Scu-Hf_RHz2fh04rxcBYQbROuzLTy59-0hU1WbwJmgVZbl0PqPDeVkSy41glNTHoOvAgL1v6B0YjScyJDy2nEaNUuZdrWpI_2zFvD8UvvU9nAYw-XpigXlC0DbYZtj-beXz8YhNqNtp3vSTm35y288ttBMxmvE-2hm9PZi-81-pWFjXd_YT6GSgXz2iq42fjkEzuYfuup0IHlkE3Uc9XT5Au8c1a3u1wa_wWAAssVP-D9FihDvAwtvAwlvAwgAs7IGFDbB-fvvuIYE7kIJzbCGFtyD1CE0ODyb7R8QV6yAqToeXBNYNLkQoUp1omUomo2ioQzqbZZoqFoGan4EprSlPpZKm_mYSKj4saDorKCyx8WPUh3HpXYRBP8hYR9JwQcLun2aFKkDRxFwkLI51uIdo8xJz5YjsTT2V8_zvYtxDr327C0vlcm2LrJFR7gxSa2jmAL9r2j658dOeojvt3-MZ6sN9_RzdVqvL-bJ64bD3C1DOt44
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+weak-scatterer+approximation+for+nonlinear+wave%E2%80%93structure+interaction+in+marine+hydrodynamics&rft.jtitle=Marine+structures&rft.au=Tong%2C+Chao&rft.au=Shao%2C+Yanlin&rft.au=Bingham%2C+Harry+B.&rft.au=Hanssen%2C+Finn-Christian+W.&rft.date=2022-11-01&rft.issn=0951-8339&rft.volume=86&rft.spage=103292&rft_id=info:doi/10.1016%2Fj.marstruc.2022.103292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marstruc_2022_103292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon