Tritium Transport Modeling at the Pore Scale in Ceramic Breeder Materials Using TMAP8
Fusion reactors depend on the blanket material to breed and release tritium at the same rate or faster than it is consumed by the fusion reaction. Cellular ceramic breeders (CCBs) are dense materials that can maintain a high tritium breeding ratio while promoting tritium release because of highly co...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on plasma science Jg. 50; H. 11; S. 4465 - 4471 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0093-3813, 1939-9375 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Fusion reactors depend on the blanket material to breed and release tritium at the same rate or faster than it is consumed by the fusion reaction. Cellular ceramic breeders (CCBs) are dense materials that can maintain a high tritium breeding ratio while promoting tritium release because of highly connected pores. Assessing the tritium breeding capabilities of these materials requires a combination of extensive experimental and modeling efforts. In this work, we develop and calibrate a multiphysics model of tritium transport. This novel model accounts for ceramic and pore diffusion, trapping and detrapping, and several surface reactions at the pore surface. We perform a sensitivity analysis and calibrate the model by comparing its predictions against experimental measurements of deuterium absorption. The calibrated model is then used to model tritium absorption in samples with different pore microstructures to investigate the effect of pore interconnectivity on tritium absorption. The model is part of the development of the multiscale, multiphysics framework for tritium transport [i.e., the Tritium Migration Analysis Program (TMAP8)], which is itself built on top of the finite-element multiphysics framework multiphysics object-oriented simulation environment (MOOSE). This study demonstrates some of TMAP8's capabilities and is the first step toward assessing the tritium breeding capabilities of ceramic breeder material designs. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Nuclear Energy (NE) DE-AC07-05ID14517 INL/CON-21-65236-Rev000 |
| ISSN: | 0093-3813 1939-9375 |
| DOI: | 10.1109/TPS.2022.3183525 |