Electrodeposition of a Ni-P-Ti3C2Tx/MoS2 coating incorporating MoS2 intercalated Ti3C2Tx particles

As a promising material, Ti3C2Tx has received much attention in recent years for brilliant performances in conductivity and lubricity. In order to modify the property of Ti3C2Tx, MoS2 intercalated Ti3C2Tx (Ti3C2Tx/MoS2) powders are made from hydrothermal reaction, which can prohibit oxidization for...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology Vol. 354; pp. 119 - 125
Main Authors: Du, Yingchao, Wang, Dongdong, Si, Pengchao, Wei, Lianqi, Wang, Yongliang, Yu, Bo, Zhang, Xiaomeng, Ye, Shufeng
Format: Journal Article
Language:English
Published: Elsevier B.V 25.11.2018
Subjects:
ISSN:0257-8972, 1879-3347
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As a promising material, Ti3C2Tx has received much attention in recent years for brilliant performances in conductivity and lubricity. In order to modify the property of Ti3C2Tx, MoS2 intercalated Ti3C2Tx (Ti3C2Tx/MoS2) powders are made from hydrothermal reaction, which can prohibit oxidization for MoS2 particles. Ni-P-Ti3C2Tx/MoS2 and Ni-P-Ti3C2Tx composite coatings are prepared by electroplating technique with addition of Ti3C2Tx/MoS2 and Ti3C2Tx particles, respectively. Compared to Ni-P composite coatings, Ni-P-Ti3C2Tx/MoS2 and Ni-P-Ti3C2Tx composite coatings show a decrease in coefficient of friction (COF). The wear loss of Ni-P-Ti3C2Tx/MoS2 composite coating is only about 0.10 mg after 5 min, under dry-grinding with the load of 2 N and circle radius of 1 cm. It is worth to mention that the microhardness of the two composite coatings gets improved much, which can be up to 1200 kg mm−2. Even though the surface roughness of Ni-P-Ti3C2Tx/MoS2 composite coating increases, the surface of the composite coating is converted from hydrophilic to hydrophobic. •MoS2 was successfully intercalated into Ti3C2Tx by hydrothermal reaction.•The addition of Ti3C2Tx/MoS2 converted the wettability of Ni-P composite coating.•The microhardness of Ni-P-Ti3C2Tx/MoS2 composite coating is up to 1200 kg mm−2.•The COF and wear loss of Ni-P-Ti3C2Tx/MoS2 coating show a dramatic reduction.
AbstractList As a promising material, Ti3C2Tx has received much attention in recent years for brilliant performances in conductivity and lubricity. In order to modify the property of Ti3C2Tx, MoS2 intercalated Ti3C2Tx (Ti3C2Tx/MoS2) powders are made from hydrothermal reaction, which can prohibit oxidization for MoS2 particles. Ni-P-Ti3C2Tx/MoS2 and Ni-P-Ti3C2Tx composite coatings are prepared by electroplating technique with addition of Ti3C2Tx/MoS2 and Ti3C2Tx particles, respectively. Compared to Ni-P composite coatings, Ni-P-Ti3C2Tx/MoS2 and Ni-P-Ti3C2Tx composite coatings show a decrease in coefficient of friction (COF). The wear loss of Ni-P-Ti3C2Tx/MoS2 composite coating is only about 0.10 mg after 5 min, under dry-grinding with the load of 2 N and circle radius of 1 cm. It is worth to mention that the microhardness of the two composite coatings gets improved much, which can be up to 1200 kg mm−2. Even though the surface roughness of Ni-P-Ti3C2Tx/MoS2 composite coating increases, the surface of the composite coating is converted from hydrophilic to hydrophobic. •MoS2 was successfully intercalated into Ti3C2Tx by hydrothermal reaction.•The addition of Ti3C2Tx/MoS2 converted the wettability of Ni-P composite coating.•The microhardness of Ni-P-Ti3C2Tx/MoS2 composite coating is up to 1200 kg mm−2.•The COF and wear loss of Ni-P-Ti3C2Tx/MoS2 coating show a dramatic reduction.
Author Wang, Dongdong
Zhang, Xiaomeng
Wei, Lianqi
Du, Yingchao
Wang, Yongliang
Yu, Bo
Ye, Shufeng
Si, Pengchao
Author_xml – sequence: 1
  givenname: Yingchao
  surname: Du
  fullname: Du, Yingchao
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, PO Box 353, Beijing 100190, China
– sequence: 2
  givenname: Dongdong
  surname: Wang
  fullname: Wang, Dongdong
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, PO Box 353, Beijing 100190, China
– sequence: 3
  givenname: Pengchao
  surname: Si
  fullname: Si, Pengchao
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, PO Box 353, Beijing 100190, China
– sequence: 4
  givenname: Lianqi
  surname: Wei
  fullname: Wei, Lianqi
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, PO Box 353, Beijing 100190, China
– sequence: 5
  givenname: Yongliang
  surname: Wang
  fullname: Wang, Yongliang
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, PO Box 353, Beijing 100190, China
– sequence: 6
  givenname: Bo
  surname: Yu
  fullname: Yu, Bo
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, PO Box 353, Beijing 100190, China
– sequence: 7
  givenname: Xiaomeng
  surname: Zhang
  fullname: Zhang, Xiaomeng
  email: xmzhang@ipe.ac.cn
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, PO Box 353, Beijing 100190, China
– sequence: 8
  givenname: Shufeng
  orcidid: 0000-0002-1046-586X
  surname: Ye
  fullname: Ye, Shufeng
  email: sfye@ipe.ac.cn
  organization: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, PO Box 353, Beijing 100190, China
BookMark eNqFkF1LwzAUhoNMcJv-BekfaJePtknBC2XMKcwPcF6HNE3kjNqUJIr-e1s3b7wZHDgkJ897yDNDk851BqFLgjOCSbnYZeHDW-1UzCgmIsNDVfgETYngVcpYzidoimnBU1FxeoZmIewwxoRX-RTVq9bo6F1jehcggusSZxOVPEL6nG6BLen2a_HgXmgyLoDuLYFOO987vz_9jqCLxmvVqmia5AAlvfIRdGvCOTq1qg3m4tDn6PV2tV3epZun9f3yZpNqVuKY0oLVti4azjjlTOelqXPKBLc6H25FUTElGlIIMrwTljBGcS10qWuTW1uUhs1Ruc_V3oXgjZW9h3flvyXBcjQld_LPlBxNSTxUhQfw6h-oIarRRfQK2uP49R43w-c-wXgZNJhOmwb84FY2Do5F_ACWvYwr
CitedBy_id crossref_primary_10_1016_j_triboint_2021_107099
crossref_primary_10_1016_j_apmate_2022_100092
crossref_primary_10_1002_aelm_202200169
crossref_primary_10_1007_s11581_025_06400_3
crossref_primary_10_1016_j_memsci_2024_122608
crossref_primary_10_1016_j_jechem_2020_02_032
crossref_primary_10_1016_j_surfcoat_2020_126209
crossref_primary_10_1016_j_triboint_2025_110665
crossref_primary_10_1016_j_surfcoat_2022_128508
crossref_primary_10_1016_j_wear_2023_204955
crossref_primary_10_3390_coatings13061042
crossref_primary_10_1016_j_diamond_2022_109557
crossref_primary_10_1016_j_compositesb_2022_110374
crossref_primary_10_1016_j_cis_2024_103186
crossref_primary_10_1016_j_susc_2025_122815
crossref_primary_10_1016_j_surfcoat_2022_128617
crossref_primary_10_1016_j_triboint_2022_108170
crossref_primary_10_1007_s11837_025_07678_4
crossref_primary_10_3390_coatings9110750
crossref_primary_10_1016_j_apsusc_2022_155905
crossref_primary_10_1016_j_jmst_2022_04_032
crossref_primary_10_1016_j_surfin_2021_101599
crossref_primary_10_1016_j_apsusc_2025_164375
crossref_primary_10_1016_j_triboint_2021_107205
crossref_primary_10_1016_j_cis_2025_103584
crossref_primary_10_1007_s10008_024_06056_5
crossref_primary_10_1007_s10008_024_06057_4
crossref_primary_10_1080_02670844_2020_1726012
Cites_doi 10.1016/j.electacta.2017.05.166
10.1021/acsnano.5b07333
10.1038/ncomms2664
10.1016/j.surfcoat.2016.09.078
10.1002/chem.201400089
10.1016/j.surfcoat.2005.11.123
10.1016/j.nanoen.2014.09.006
10.1016/0257-8972(95)02702-5
10.1002/adma.201102306
10.1039/C6RA07899K
10.1016/j.jallcom.2017.11.250
10.1016/S0013-4686(03)00486-9
10.1002/kin.20810
10.1016/j.matchemphys.2016.04.034
10.1179/0020296713Z.000000000161
10.1080/00202967.2016.1208383
10.1021/acsnano.6b07668
10.1002/adma.201304138
10.1016/0043-1648(95)06765-5
10.1080/00202967.2000.11871333
10.1016/j.apsusc.2017.06.168
10.1080/00202967.1997.11871143
10.1007/s12633-016-9452-6
10.1016/j.matchemphys.2005.12.016
10.1002/1521-3749(200212)628:12<2778::AID-ZAAC2778>3.0.CO;2-H
10.1016/j.apsusc.2004.02.003
10.1038/ncomms5477
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.surfcoat.2018.08.090
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
EndPage 125
ExternalDocumentID 10_1016_j_surfcoat_2018_08_090
S0257897218309502
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
~HD
ID FETCH-LOGICAL-c360t-253bfb5d737273c46eb42387fc4b5d8593a8d158153b8f13320b8c6cbe4ff56e3
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447475100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0257-8972
IngestDate Sat Nov 29 04:51:10 EST 2025
Tue Nov 18 22:35:38 EST 2025
Fri Feb 23 02:25:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tribological property
Ni-P-Ti3C2Tx/MoS2 composite coating
Ni-P-Ti3C2Tx composite coating
Ti3C2Tx/MoS2 powder
Microhardness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-253bfb5d737273c46eb42387fc4b5d8593a8d158153b8f13320b8c6cbe4ff56e3
ORCID 0000-0002-1046-586X
OpenAccessLink http://ir.ipe.ac.cn/handle/122111/26208
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_surfcoat_2018_08_090
crossref_citationtrail_10_1016_j_surfcoat_2018_08_090
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2018_08_090
PublicationCentury 2000
PublicationDate 2018-11-25
PublicationDateYYYYMMDD 2018-11-25
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-25
  day: 25
PublicationDecade 2010
PublicationTitle Surface & coatings technology
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Xue, Huang, Ye, Walsh, Chen, Wang (bb0035) 2016; 6
Volkov, Koval'chuk, Ohenko, Reshetnyak (bb0075) 2008
Low, Walsh (bb0005) 2011
Helle, Walsh (bb0010) 1997; 75
Luo, Tao, Zhang, Xia, Huang, Zhang, Gan, Liang, Zhang (bb0135) 2016; 10
Wörle, Krumeich, Bieri, Muhr, Nesper (bb0070) 2002; 62
Naguib, Mochalin, Barsoum, Gogotsi (bb0115) 2014; 26
Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (bb0110) 2011; 23
Ma, Ye, Chen, Chen, YangLee (bb0120) 2014; 10
Zheng, Guo, Liu, Wang, Meng, Li, Li, Luo (bb0125) 2018; 735
Walsh, Ponce de León (bb0025) 2014; 92
Luo, Zhang, Yuan, Jin, Zhang, Huang, Liang, Xia, Zhang, Gan, Tao (bb0140) 2017; 11
Ebn Touhami, Cherkaoui, Chassaing (bb0050) 2003; 48
Kerr, Barker, Walsh, Archer (bb0015) 2000; 78
Kung, Wen, Shih, Ming (bb0095) 2006; 100
He, Wang, Walsh, Chiu, Reed (bb0085) 2016; 307
He, Sun, Wang, Chiu, Reed, Walsh (bb0040) 2017; 245
Donnet (bb0105) 1996; 80
Shibli, Chinch (bb0045) 2016; 178
Prasanna, Prasanta (bb0090) 2017; 9
Czagány, Baumli, Kaptay (bb0145) 2017; 423
Lyakishev, Alymov, Dobatkin (bb0080) 2002; 6
Endo, Iijima, Kaneko, Nishimura (bb0100) 1995; 190
Song, Hu (bb0150) 2014; 5
Low, Wills, Walsh (bb0020) 2006; 201
Cheong, Luan, Shoesmeith (bb0055) 2004; 22
Antropov, Lebedinskii (bb0065) 1986
Wang, Zhou, Walsh (bb0030) 2016; 94
Stankiewicz, Szczygiel, Scczygiel (bb0060) 2013; 45
Torad, Salunkhe, Li, Hamoudi, Imura, Sakka, Hu, Yamauchi (bb0155) 2014; 20
Mashtalir, Naguib, Mochalin, Dall'Agnese, Heon, Barsoum, Gogotsi (bb0130) 2013; 4
Wang (10.1016/j.surfcoat.2018.08.090_bb0030) 2016; 94
Donnet (10.1016/j.surfcoat.2018.08.090_bb0105) 1996; 80
Low (10.1016/j.surfcoat.2018.08.090_bb0020) 2006; 201
Kung (10.1016/j.surfcoat.2018.08.090_bb0095) 2006; 100
Naguib (10.1016/j.surfcoat.2018.08.090_bb0115) 2014; 26
Zheng (10.1016/j.surfcoat.2018.08.090_bb0125) 2018; 735
Cheong (10.1016/j.surfcoat.2018.08.090_bb0055) 2004; 22
He (10.1016/j.surfcoat.2018.08.090_bb0085) 2016; 307
Ma (10.1016/j.surfcoat.2018.08.090_bb0120) 2014; 10
Stankiewicz (10.1016/j.surfcoat.2018.08.090_bb0060) 2013; 45
Volkov (10.1016/j.surfcoat.2018.08.090_bb0075) 2008
Walsh (10.1016/j.surfcoat.2018.08.090_bb0025) 2014; 92
Ebn Touhami (10.1016/j.surfcoat.2018.08.090_bb0050) 2003; 48
Torad (10.1016/j.surfcoat.2018.08.090_bb0155) 2014; 20
Antropov (10.1016/j.surfcoat.2018.08.090_bb0065) 1986
Song (10.1016/j.surfcoat.2018.08.090_bb0150) 2014; 5
Prasanna (10.1016/j.surfcoat.2018.08.090_bb0090) 2017; 9
Luo (10.1016/j.surfcoat.2018.08.090_bb0140) 2017; 11
Endo (10.1016/j.surfcoat.2018.08.090_bb0100) 1995; 190
Low (10.1016/j.surfcoat.2018.08.090_bb0005) 2011
Zhao (10.1016/j.surfcoat.2018.08.090_bb0035) 2016; 6
Mashtalir (10.1016/j.surfcoat.2018.08.090_bb0130) 2013; 4
Lyakishev (10.1016/j.surfcoat.2018.08.090_bb0080) 2002; 6
Helle (10.1016/j.surfcoat.2018.08.090_bb0010) 1997; 75
Shibli (10.1016/j.surfcoat.2018.08.090_bb0045) 2016; 178
Kerr (10.1016/j.surfcoat.2018.08.090_bb0015) 2000; 78
Czagány (10.1016/j.surfcoat.2018.08.090_bb0145) 2017; 423
Luo (10.1016/j.surfcoat.2018.08.090_bb0135) 2016; 10
Naguib (10.1016/j.surfcoat.2018.08.090_bb0110) 2011; 23
He (10.1016/j.surfcoat.2018.08.090_bb0040) 2017; 245
Wörle (10.1016/j.surfcoat.2018.08.090_bb0070) 2002; 62
References_xml – volume: 6
  start-page: 59104
  year: 2016
  end-page: 59112
  ident: bb0035
  article-title: One-step electrodeposition of a self-cleaning and corrosion resistant Ni/WS
  publication-title: RSC Adv.
– year: 1986
  ident: bb0065
  article-title: Composite Electrochemical Coatings and Materials
– volume: 190
  start-page: 219
  year: 1995
  end-page: 225
  ident: bb0100
  article-title: Tribological characteristics of bonded MoS
  publication-title: Wear
– volume: 10
  start-page: 144
  year: 2014
  end-page: 152
  ident: bb0120
  article-title: Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS
  publication-title: Nano Energy
– year: 2008
  ident: bb0075
  article-title: Nanochemistry, Nanosystems, and Nanomaterials: A Monograph
– volume: 4
  start-page: 1716
  year: 2013
  end-page: 1723
  ident: bb0130
  article-title: Intercalation and delamination of layered carbides and carbonitrides
  publication-title: Nat. Commun.
– volume: 80
  start-page: 151
  year: 1996
  end-page: 156
  ident: bb0105
  article-title: Advanced solid lubricant coatings for high vacuum environments
  publication-title: Surf. Coat. Technol.
– volume: 9
  start-page: 761
  year: 2017
  end-page: 774
  ident: bb0090
  article-title: Effect of annealing temperature and alumina particles on mechanical and tribological properties of Ni-P-Al
  publication-title: SILICON
– volume: 6
  start-page: 125
  year: 2002
  end-page: 130
  ident: bb0080
  article-title: Nanomaterials for structural application
  publication-title: Konvers. Mashinostr.
– volume: 75
  start-page: 53
  year: 1997
  end-page: 58
  ident: bb0010
  article-title: Electrodeposition of dispersion composite coatings based upon polymer and ceramic particles in a metal matrix
  publication-title: T. I. Met. Finish.
– volume: 20
  start-page: 7895
  year: 2014
  end-page: 7900
  ident: bb0155
  article-title: Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67
  publication-title: Chemistry
– volume: 245
  start-page: 872
  year: 2017
  end-page: 882
  ident: bb0040
  article-title: An electrodeposited Ni-P-WS
  publication-title: Electrochim. Acta
– volume: 307
  start-page: 926
  year: 2016
  end-page: 934
  ident: bb0085
  article-title: Self-lubricating Ni-P-MoS
  publication-title: Surf. Coat. Technol.
– volume: 10
  start-page: 2491
  year: 2016
  end-page: 2499
  ident: bb0135
  article-title: Sn
  publication-title: ACS Nano
– volume: 178
  start-page: 21
  year: 2016
  end-page: 30
  ident: bb0045
  article-title: Development and electrochemical characterization of Ni-P coated tungsten incorporated electroless nickel coatings
  publication-title: Mater. Chem. Phys.
– volume: 94
  start-page: 274
  year: 2016
  end-page: 282
  ident: bb0030
  article-title: Diverse electrodeposits from modified acid sulphate (watts nickel) baths
  publication-title: T. I. Met. Finish.
– volume: 201
  start-page: 371
  year: 2006
  end-page: 383
  ident: bb0020
  article-title: Electrodeposition of composite coatings containing nanoparticles in a metal deposit
  publication-title: Surf. Coat. Technol.
– volume: 22
  start-page: 282
  year: 2004
  end-page: 300
  ident: bb0055
  article-title: The effect of stabilizers on the bath stability of electroless Ni deposition and the deposit
  publication-title: Appl. Surf. Sci.
– volume: 48
  start-page: 3651
  year: 2003
  end-page: 3658
  ident: bb0050
  article-title: Modelisation of Ni-P electroless deposition in ammonical solutions
  publication-title: Electrochim. Acta
– volume: 45
  start-page: 755
  year: 2013
  end-page: 762
  ident: bb0060
  article-title: Summary of existing models of the Ni-P coating electroless deposition process
  publication-title: In. J. Chem. Kinet.
– year: 2011
  ident: bb0005
  article-title: Self-lubricating metal composite coatings by electrodeposition or electroless deposition
  publication-title: Encyclopedia of Advanced Tribology
– volume: 26
  start-page: 992
  year: 2014
  end-page: 998
  ident: bb0115
  article-title: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides
  publication-title: Adv. Mater.
– volume: 735
  start-page: 1262
  year: 2018
  end-page: 1270
  ident: bb0125
  article-title: MoS
  publication-title: J. Alloys Compd.
– volume: 423
  start-page: 160
  year: 2017
  end-page: 169
  ident: bb0145
  article-title: The influence of the phosphorous content and heat treatment on the nano-micro-structure, thickness and micro-hardness of electroless Ni-P coatings on steel
  publication-title: Appl. Surf. Sci.
– volume: 92
  start-page: 83
  year: 2014
  end-page: 98
  ident: bb0025
  article-title: A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying coatings technology
  publication-title: T. I. Met. Finish.
– volume: 23
  start-page: 4248
  year: 2011
  end-page: 4253
  ident: bb0110
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4477
  year: 2014
  end-page: 4485
  ident: bb0150
  article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
  publication-title: Nat. Commun.
– volume: 78
  start-page: 171
  year: 2000
  end-page: 178
  ident: bb0015
  article-title: The electrodeposition of composite coatings based on metal matrix-included particle deposits
  publication-title: T. I. Met. Finish.
– volume: 62
  start-page: 2778
  year: 2002
  end-page: 2784
  ident: bb0070
  article-title: Flexible V
  publication-title: Z. Anorg. Allg. Chem.
– volume: 100
  start-page: 54
  year: 2006
  end-page: 59
  ident: bb0095
  article-title: Ni–P–SiC composite produced by pulse and direct current plating
  publication-title: Mater. Chem. Phys.
– volume: 11
  start-page: 2459
  year: 2017
  end-page: 2469
  ident: bb0140
  article-title: Pillared structure design of MXene with ultra-large interlayer spacing for high performance lithium-ion capacitors
  publication-title: ACS Nano
– volume: 245
  start-page: 872
  year: 2017
  ident: 10.1016/j.surfcoat.2018.08.090_bb0040
  article-title: An electrodeposited Ni-P-WS2 coating with combined super-hydrophobicity and self-lubricating properties
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.166
– volume: 10
  start-page: 2491
  year: 2016
  ident: 10.1016/j.surfcoat.2018.08.090_bb0135
  article-title: Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07333
– volume: 4
  start-page: 1716
  year: 2013
  ident: 10.1016/j.surfcoat.2018.08.090_bb0130
  article-title: Intercalation and delamination of layered carbides and carbonitrides
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2664
– volume: 6
  start-page: 125
  year: 2002
  ident: 10.1016/j.surfcoat.2018.08.090_bb0080
  article-title: Nanomaterials for structural application
  publication-title: Konvers. Mashinostr.
– volume: 307
  start-page: 926
  year: 2016
  ident: 10.1016/j.surfcoat.2018.08.090_bb0085
  article-title: Self-lubricating Ni-P-MoS2 composite coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.09.078
– volume: 20
  start-page: 7895
  year: 2014
  ident: 10.1016/j.surfcoat.2018.08.090_bb0155
  article-title: Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67
  publication-title: Chemistry
  doi: 10.1002/chem.201400089
– volume: 201
  start-page: 371
  year: 2006
  ident: 10.1016/j.surfcoat.2018.08.090_bb0020
  article-title: Electrodeposition of composite coatings containing nanoparticles in a metal deposit
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.11.123
– volume: 10
  start-page: 144
  year: 2014
  ident: 10.1016/j.surfcoat.2018.08.090_bb0120
  article-title: Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.09.006
– volume: 80
  start-page: 151
  year: 1996
  ident: 10.1016/j.surfcoat.2018.08.090_bb0105
  article-title: Advanced solid lubricant coatings for high vacuum environments
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/0257-8972(95)02702-5
– volume: 23
  start-page: 4248
  year: 2011
  ident: 10.1016/j.surfcoat.2018.08.090_bb0110
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 6
  start-page: 59104
  year: 2016
  ident: 10.1016/j.surfcoat.2018.08.090_bb0035
  article-title: One-step electrodeposition of a self-cleaning and corrosion resistant Ni/WS2 superhydrophobic surface
  publication-title: RSC Adv.
  doi: 10.1039/C6RA07899K
– volume: 735
  start-page: 1262
  year: 2018
  ident: 10.1016/j.surfcoat.2018.08.090_bb0125
  article-title: MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.11.250
– volume: 48
  start-page: 3651
  year: 2003
  ident: 10.1016/j.surfcoat.2018.08.090_bb0050
  article-title: Modelisation of Ni-P electroless deposition in ammonical solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(03)00486-9
– volume: 45
  start-page: 755
  year: 2013
  ident: 10.1016/j.surfcoat.2018.08.090_bb0060
  article-title: Summary of existing models of the Ni-P coating electroless deposition process
  publication-title: In. J. Chem. Kinet.
  doi: 10.1002/kin.20810
– volume: 178
  start-page: 21
  year: 2016
  ident: 10.1016/j.surfcoat.2018.08.090_bb0045
  article-title: Development and electrochemical characterization of Ni-P coated tungsten incorporated electroless nickel coatings
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2016.04.034
– year: 1986
  ident: 10.1016/j.surfcoat.2018.08.090_bb0065
– volume: 92
  start-page: 83
  year: 2014
  ident: 10.1016/j.surfcoat.2018.08.090_bb0025
  article-title: A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying coatings technology
  publication-title: T. I. Met. Finish.
  doi: 10.1179/0020296713Z.000000000161
– volume: 94
  start-page: 274
  year: 2016
  ident: 10.1016/j.surfcoat.2018.08.090_bb0030
  article-title: Diverse electrodeposits from modified acid sulphate (watts nickel) baths
  publication-title: T. I. Met. Finish.
  doi: 10.1080/00202967.2016.1208383
– volume: 11
  start-page: 2459
  year: 2017
  ident: 10.1016/j.surfcoat.2018.08.090_bb0140
  article-title: Pillared structure design of MXene with ultra-large interlayer spacing for high performance lithium-ion capacitors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07668
– year: 2008
  ident: 10.1016/j.surfcoat.2018.08.090_bb0075
– volume: 26
  start-page: 992
  year: 2014
  ident: 10.1016/j.surfcoat.2018.08.090_bb0115
  article-title: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304138
– volume: 190
  start-page: 219
  year: 1995
  ident: 10.1016/j.surfcoat.2018.08.090_bb0100
  article-title: Tribological characteristics of bonded MoS2 films evaluated in rolling-sliding contact in a vacuum
  publication-title: Wear
  doi: 10.1016/0043-1648(95)06765-5
– volume: 78
  start-page: 171
  year: 2000
  ident: 10.1016/j.surfcoat.2018.08.090_bb0015
  article-title: The electrodeposition of composite coatings based on metal matrix-included particle deposits
  publication-title: T. I. Met. Finish.
  doi: 10.1080/00202967.2000.11871333
– volume: 423
  start-page: 160
  year: 2017
  ident: 10.1016/j.surfcoat.2018.08.090_bb0145
  article-title: The influence of the phosphorous content and heat treatment on the nano-micro-structure, thickness and micro-hardness of electroless Ni-P coatings on steel
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.06.168
– volume: 75
  start-page: 53
  year: 1997
  ident: 10.1016/j.surfcoat.2018.08.090_bb0010
  article-title: Electrodeposition of dispersion composite coatings based upon polymer and ceramic particles in a metal matrix
  publication-title: T. I. Met. Finish.
  doi: 10.1080/00202967.1997.11871143
– volume: 9
  start-page: 761
  year: 2017
  ident: 10.1016/j.surfcoat.2018.08.090_bb0090
  article-title: Effect of annealing temperature and alumina particles on mechanical and tribological properties of Ni-P-Al2O3 composite coatings
  publication-title: SILICON
  doi: 10.1007/s12633-016-9452-6
– year: 2011
  ident: 10.1016/j.surfcoat.2018.08.090_bb0005
  article-title: Self-lubricating metal composite coatings by electrodeposition or electroless deposition
– volume: 100
  start-page: 54
  year: 2006
  ident: 10.1016/j.surfcoat.2018.08.090_bb0095
  article-title: Ni–P–SiC composite produced by pulse and direct current plating
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.12.016
– volume: 62
  start-page: 2778
  year: 2002
  ident: 10.1016/j.surfcoat.2018.08.090_bb0070
  article-title: Flexible V7O16 layers as common structural element of vanadium oxide nanotubes
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/1521-3749(200212)628:12<2778::AID-ZAAC2778>3.0.CO;2-H
– volume: 22
  start-page: 282
  year: 2004
  ident: 10.1016/j.surfcoat.2018.08.090_bb0055
  article-title: The effect of stabilizers on the bath stability of electroless Ni deposition and the deposit
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2004.02.003
– volume: 5
  start-page: 4477
  year: 2014
  ident: 10.1016/j.surfcoat.2018.08.090_bb0150
  article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5477
SSID ssj0001794
Score 2.4348114
Snippet As a promising material, Ti3C2Tx has received much attention in recent years for brilliant performances in conductivity and lubricity. In order to modify the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms Microhardness
Ni-P-Ti3C2Tx composite coating
Ni-P-Ti3C2Tx/MoS2 composite coating
Ti3C2Tx/MoS2 powder
Tribological property
Title Electrodeposition of a Ni-P-Ti3C2Tx/MoS2 coating incorporating MoS2 intercalated Ti3C2Tx particles
URI https://dx.doi.org/10.1016/j.surfcoat.2018.08.090
Volume 354
WOSCitedRecordID wos000447475100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhgQ8IBggxpf8wFsVLYmd2Hmcuk6AoJq0gvoWxY7NMk1JydJp_8n-3Z1jJ0vXibEHXqLWzl2a_K53l9N9IPQ59CWnQkqPJhxeUOKceULSwBMq4ywDGyTbZtW_vrPZjC8WydFodNXVwlycsbLkl5fJ8r9CDWsAtimdfQDcPVNYgM8AOhwBdjj-E_BTO9gmV10-li2BnBXekTcvyCScg705_FEdh2NZZY2taZGuobH51m6ZNhI14JcZj9SRjZddGt3QpT1e1TqTqpUhx_B83GxE7A9WrbaHXXmSVTdxfKtrDqryd145K2oCPoVNHr51trK13CDSf4phvCLgpnDP1jY7tQZKwuMJW9PBJKIDLRo4LWoNcmCpN3S9DTucgpGptbk9k6fH236sdgDpenPtW0avT0XsstxO045PavikZjhn4j9C2yGLEtD42_tfp4tvvZE3eqwN37mbGRSf3_2L7vZ7Br7M_AV67l5C8L5F8yUaqXIHPZl0s_920LNBm8pXSGyIFK40zvBQpPaM1GCHP14TKNxuDQUKOyLcC9Rr9PNwOp988dxsDk-S2G8AUSK0iHIz5YgRSWMlwDHnTEsKq6aJXsbzIOJgUAXXASGhL7iMpVBU6yhW5A3aKqtSvUWYE5b4QK-ZCqlgwITqRHFh2gzlYRDvoqh7cql0jevN_JSz9O_Y7aK9nm5pW7fcS5F0wKTOAbWOZQoydw_tuwdf7T16evP_-IC2mnqlPqLH8qIpzutPTuCuAZjJqnQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrodeposition+of+a+Ni-P-Ti3C2Tx%2FMoS2+coating+incorporating+MoS2+intercalated+Ti3C2Tx+particles&rft.jtitle=Surface+%26+coatings+technology&rft.au=Du%2C+Yingchao&rft.au=Wang%2C+Dongdong&rft.au=Si%2C+Pengchao&rft.au=Wei%2C+Lianqi&rft.date=2018-11-25&rft.issn=0257-8972&rft.volume=354&rft.spage=119&rft.epage=125&rft_id=info:doi/10.1016%2Fj.surfcoat.2018.08.090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2018_08_090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon