Improved Multiobjective Genetic Algorithm for Partitioning Distributed Photovoltaic Clusters: Balancing Spatial Distance and Power Similarity
The prediction of power output from photovoltaic generation clusters is crucial for optimizing the dispatch of regional photovoltaic generation. Enhancing the accuracy of power prediction for photovoltaic power plant clusters requires the segmentation of distributed photovoltaic systems into cluster...
Gespeichert in:
| Veröffentlicht in: | Journal of computing and information technology Jg. 32; H. 4; S. 251 - 264 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Sveuciliste U Zagrebu
01.12.2024
Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva University of Zagreb Faculty of Electrical Engineering and Computing |
| Schlagworte: | |
| ISSN: | 1330-1136, 1846-3908 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The prediction of power output from photovoltaic generation clusters is crucial for optimizing the dispatch of regional photovoltaic generation. Enhancing the accuracy of power prediction for photovoltaic power plant clusters requires the segmentation of distributed photovoltaic systems into clusters. This paper proposes a method for partitioning distributed photovoltaic clusters using a multiobjective genetic algorithm NSGA2, with spatial distance modularity and electricity similarity as optimization objectives to determine the optimal cluster partitioning scheme. The numerical examples and experimental results of the case analysis demonstrate a significant improvement in the convergence speed of the prediction system when employing the clustering partitioning method. This cluster segmentation algorithm significantly reduces the complexity and investment cost of the prediction system. |
|---|---|
| Bibliographie: | 326540 |
| ISSN: | 1330-1136 1846-3908 |
| DOI: | 10.20532/cit.2024.1005870 |