Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

Owing to improvements in computing power, deep learning technology using convolutional neural networks (CNNs) has recently been used in various fields. However, using CNNs on edge devices is challenging because of the large computation required to achieve high performance. To solve this problem, pru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 12; S. 123771 - 123781
Hauptverfasser: Ko, Hyunjun, Kang, Jin-Ku, Kim, Yongwoo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Owing to improvements in computing power, deep learning technology using convolutional neural networks (CNNs) has recently been used in various fields. However, using CNNs on edge devices is challenging because of the large computation required to achieve high performance. To solve this problem, pruning, which reduces redundant parameters and computations, has been widely studied. However, a conventional pruning method requires two learning processes, which are time-consuming and resource-intensive, and it is difficult to reflect the redundancy in the pruned network because it only performs pruning once on the unpruned network. Therefore, in this paper, we utilize a single learning process and propose an adaptive scaling method that dynamically adjusts the size of the network to reflect the changing redundancy in the pruned network. To verify the performance of each method, we compare the performance of the proposed methods by conducting experiments on various datasets and networks. In our experiments using the ImageNet dataset on ResNet-50, pruning FLOPs by 50.1% and 74.0% resulted in a decrease in top-1 accuracy by 0.92% and 3.38%, respectively, and improved inference time by 26.4% and 58.9%, respectively. In addition, pruning FLOPs by 27.37%, 36.84% and 46.41% using the COCO dataset on YOLOv7, reduced mAP(0.5-0.95) by 1.2%, 2.2% and 2.9%, respectively, and improved inference time by 12.9%, 16.9% and19.3%.
AbstractList Owing to improvements in computing power, deep learning technology using convolutional neural networks (CNNs) has recently been used in various fields. However, using CNNs on edge devices is challenging because of the large computation required to achieve high performance. To solve this problem, pruning, which reduces redundant parameters and computations, has been widely studied. However, a conventional pruning method requires two learning processes, which are time-consuming and resource-intensive, and it is difficult to reflect the redundancy in the pruned network because it only performs pruning once on the unpruned network. Therefore, in this paper, we utilize a single learning process and propose an adaptive scaling method that dynamically adjusts the size of the network to reflect the changing redundancy in the pruned network. To verify the performance of each method, we compare the performance of the proposed methods by conducting experiments on various datasets and networks. In our experiments using the ImageNet dataset on ResNet-50, pruning FLOPs by 50.1% and 74.0% resulted in a decrease in top-1 accuracy by 0.92% and 3.38%, respectively, and improved inference time by 26.4% and 58.9%, respectively. In addition, pruning FLOPs by 27.37%, 36.84% and 46.41% using the COCO dataset on YOLOv7, reduced mAP(0.5-0.95) by 1.2%, 2.2% and 2.9%, respectively, and improved inference time by 12.9%, 16.9% and19.3%.
Author Kim, Yongwoo
Ko, Hyunjun
Kang, Jin-Ku
Author_xml – sequence: 1
  givenname: Hyunjun
  orcidid: 0009-0005-8955-744X
  surname: Ko
  fullname: Ko, Hyunjun
  organization: Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
– sequence: 2
  givenname: Jin-Ku
  orcidid: 0000-0002-3752-3740
  surname: Kang
  fullname: Kang, Jin-Ku
  organization: Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
– sequence: 3
  givenname: Yongwoo
  orcidid: 0000-0002-1011-2319
  surname: Kim
  fullname: Kim, Yongwoo
  email: yongwoo.kim@knue.ac.kr
  organization: Department of Technology Education, Korea National University of Education, Cheongju, Republic of Korea
BookMark eNpNUctKQzEQDaKgVr9AFwHXrXnfZllqfYAvqI9lSJOJptabmtwq_r23XpHOZmYOc84ZOPtou041IHREyYBSok9H4_FkOh0wwsSACyk401toj1Gl-1xytb0x76LDUuakrWELyWoP3Y-8XTbxE_DU2UWsX_B5XDSQ8X1e1ev1BprX5HFIGT_FElONb6H5Svmt4OfYvOLJ-wy8B4_P4DM6KAdoJ9hFgcO_3kOP55OH8WX_-u7iajy67jsuddMPzldKO6qEp7YSVmsWgtQgJBGBOgnEWcusm2kbqgoCU0IxClwNGTAiOO-hq07XJzs3yxzfbf42yUbzC6T8YmxuoluAUdwFC8xXknERwFnpvVJhyKsZ8UKLVuuk01rm9LGC0ph5WuW6fd9wSphWWvG1I--uXE6lZAj_rpSYdRKmS8KskzB_SbSs444VAWCDoZSQquI_3kGF7g
CODEN IAECCG
Cites_doi 10.1109/jstsp.2024.3387299
10.1109/ICCV.2017.298
10.1007/978-3-030-58536-5_38
10.1007/s11263-014-0733-5
10.1145/3065386
10.1109/5.726791
10.1109/CVPR.2015.7298594
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2018.00958
10.1007/978-3-319-24574-4_28
10.1109/CVPR42600.2020.00160
10.1007/978-3-030-01270-0_19
10.1109/ICCV48922.2021.00447
10.1016/j.patcog.2020.107461
10.1109/ACCESS.2022.3188323
10.1109/CVPR.2009.5206848
10.48550/arXiv.1802.02611
10.1109/CVPR52729.2023.01544
10.1109/CVPR.2016.90
10.5555/3045118.3045167
10.1109/CVPR.2015.7298965
10.l007/978-3-319-46448-0_2
10.1109/CVPR52729.2023.00721
10.1109/CVPR.2019.01152
10.1109/CVPR52688.2022.01197
10.1109/CVPR.2019.00290
10.1109/VTC2023-Spring57618.2023.10200157
10.1007/978-3-319-10602-1_48
10.24963/ijcai.2018/309
10.1109/CVPR52688.2022.00029
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3454329
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 123781
ExternalDocumentID oai_doaj_org_article_63cfae2d75234feca5dd66f837b0d494
10_1109_ACCESS_2024_3454329
10664567
Genre orig-research
GrantInformation_xml – fundername: MSIT through the Information Technology Research Center (ITRC) Support Program supervised by the Institute for Information and Communications Technology Planning and Evaluation (IITP)
  grantid: IITP-2021-0-02052
– fundername: Korean Government through the Ministry of Science and ICT (MSIT), South Korea
  grantid: 2022R1G1A1007415
– fundername: National Research Foundation of Korea (NRF) Grant
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-fcd769c164d1a74a992ff59e4504f1c5e0caa2acb9af77ef264621e3682e20433
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310497000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:42:22 EDT 2025
Mon Jun 30 16:34:05 EDT 2025
Sat Nov 29 04:27:04 EST 2025
Wed Aug 27 02:01:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-fcd769c164d1a74a992ff59e4504f1c5e0caa2acb9af77ef264621e3682e20433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3752-3740
0000-0002-1011-2319
0009-0005-8955-744X
OpenAccessLink https://ieeexplore.ieee.org/document/10664567
PQID 3102969633
PQPubID 4845423
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_63cfae2d75234feca5dd66f837b0d494
crossref_primary_10_1109_ACCESS_2024_3454329
ieee_primary_10664567
proquest_journals_3102969633
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Kang (ref30)
ref12
ref15
ref37
ref36
ref31
ref11
ref33
ref10
ref32
Krizhevsky (ref35) 2009
ref2
ref1
ref39
ref16
ref38
ref19
ref18
Wang (ref34) 2022
Simonyan (ref4) 2014
Li (ref27) 2016
Nonnenmacher (ref29) 2021
Xu (ref14) 2018
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref40) 2022
Chen (ref17); 34
ref8
ref7
ref9
ref3
ref6
ref5
Sui (ref28); 34
References_xml – year: 2018
  ident: ref14
  article-title: Hybrid pruning: Thinner sparse networks for fast inference on edge devices
  publication-title: arXiv:1811.00482
– ident: ref1
  doi: 10.1109/jstsp.2024.3387299
– ident: ref19
  doi: 10.1109/ICCV.2017.298
– ident: ref18
  doi: 10.1007/978-3-030-58536-5_38
– year: 2022
  ident: ref34
  article-title: Trainability preserving neural pruning
  publication-title: arXiv:2207.12534
– ident: ref38
  doi: 10.1007/s11263-014-0733-5
– ident: ref6
  doi: 10.1145/3065386
– ident: ref7
  doi: 10.1109/5.726791
– ident: ref5
  doi: 10.1109/CVPR.2015.7298594
– volume: 34
  start-page: 19637
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref17
  article-title: Only train once: A one-shot neural network training and pruning framework
– year: 2021
  ident: ref29
  article-title: SOSP: Efficiently capturing global correlations by second-order structured pruning
  publication-title: arXiv:2110.11395
– start-page: 5122
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Operation-aware soft channel pruning using differentiable masks
– ident: ref10
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref20
  doi: 10.1109/CVPR.2018.00958
– ident: ref11
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref25
  doi: 10.1109/CVPR42600.2020.00160
– ident: ref22
  doi: 10.1007/978-3-030-01270-0_19
– ident: ref33
  doi: 10.1109/ICCV48922.2021.00447
– ident: ref23
  doi: 10.1016/j.patcog.2020.107461
– ident: ref15
  doi: 10.1109/ACCESS.2022.3188323
– ident: ref36
  doi: 10.1109/CVPR.2009.5206848
– ident: ref12
  doi: 10.48550/arXiv.1802.02611
– ident: ref31
  doi: 10.1109/CVPR52729.2023.01544
– ident: ref3
  doi: 10.1109/CVPR.2016.90
– ident: ref39
  doi: 10.5555/3045118.3045167
– ident: ref13
  doi: 10.1109/CVPR.2015.7298965
– volume: 34
  start-page: 24604
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref28
  article-title: Chip: Channel independence-based pruning for compact neural networks
– ident: ref9
  doi: 10.l007/978-3-319-46448-0_2
– ident: ref8
  doi: 10.1109/CVPR52729.2023.00721
– volume-title: Filter-Gap
  year: 2022
  ident: ref40
– ident: ref24
  doi: 10.1109/CVPR.2019.01152
– ident: ref16
  doi: 10.1109/CVPR52688.2022.01197
– ident: ref21
  doi: 10.1109/CVPR.2019.00290
– year: 2016
  ident: ref27
  article-title: Pruning filters for efficient convnets
  publication-title: arXiv:1608.08710
– ident: ref2
  doi: 10.1109/VTC2023-Spring57618.2023.10200157
– volume-title: Learning multiple layers of features from tiny images
  year: 2009
  ident: ref35
– year: 2014
  ident: ref4
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref37
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref26
  doi: 10.24963/ijcai.2018/309
– ident: ref32
  doi: 10.1109/CVPR52688.2022.00029
SSID ssj0000816957
Score 2.2998722
Snippet Owing to improvements in computing power, deep learning technology using convolutional neural networks (CNNs) has recently been used in various fields....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 123771
SubjectTerms Adaptive filters
Adaptive systems
Artificial neural networks
Batch normalization
Computer vision
convolutional neural network
Convolutional neural networks
Datasets
Deep learning
Filtering algorithms
Inference
inference time
Information filters
Machine learning
network compression
Pruning
Quantization (signal)
Redundancy
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQYoAB8SiiUJAHRkITJ7bjsZRWDFBVAko3y_FDdKBUbcr3c-2kEImBhdWK5Pjc5PocP85F6KqglCtGbcTCNiNQgEi5nEUwFREjjLIqVFGYPPDRKJ9OxbhR6sufCavsgSvguizVTlliOCimzFmtqDGMOdBVRWwyEZxAYy4aYirk4DxhgvLaZiiJRbfX78OIQBCS7CbNaJYGUvkzFQXH_rrEyq-8HCab4QHar1ki7lVvd4i27PwI7TW8A4_RuGfUwucq_AQwQxMezvzONx4v136tAz-G2tAYSCmehAvkeFQd-V7h11n5hgfvhYWsY_CdDdmihV6Gg-f-fVSXR4h0SkUZOW04Exr0jkkUz5QQxDkqLACeuURTG2uliNKFUI5z64D6MJLYlOXE-hux6Qnann_M7SnCjBU2psrZXAA9MqoQ3vOlIAVw70zzuI2uN0jJReWCIYN6iIWsgJUeWFkD20a3Hs3vR72FdWiAwMo6sPKvwLZRy8ei0R9jwPZ4G3U2wZH1_7aSQFKJ9_lJ07P_6Psc7frxVEstHbRdLtf2Au3oz3K2Wl6GT-0L3fXV0g
  priority: 102
  providerName: Directory of Open Access Journals
Title Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices
URI https://ieeexplore.ieee.org/document/10664567
https://www.proquest.com/docview/3102969633
https://doaj.org/article/63cfae2d75234feca5dd66f837b0d494
Volume 12
WOSCitedRecordID wos001310497000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED40QYZ2yKNNETcPcOhYJTLFhzk6jo0OjWEgz42gyCPiIU7gR8f-9h4p5QEEGbIIAiFBJD_x7rsj7w7gZy2ldkpiofI2I1GAwsWeKkgV8WCCQ5erKFz_0eNx7_bWTNpg9RwLg4j58Bkep9u8lx8e_Cq5ymiFK0UKX6_BmtaqCdZ6dqikChJG6jazULc0J_3BgAZBNiAXx5WQoso88kX75CT9bVWVN6I465fR1gd7tg2bLZFk_Qb5HfiEs6_w5VV6wW8w6Qf3mMQZuyAkqImNpmlznE3mq-QOYee5fDQj3squc4w5GzenwhfsZrq8Y8P7GkkwBXaGWaDswtVoeDn4XbQVFApfSbMsog9aGU8mUeg6LZwxPEZpkDARsesllt457nxtXNQaI7EjxbtYqR7HFDRbfYf12cMM94ApVWMpXcSeIQYVXG1SWpia10TPhddlB349zax9bBJl2GxglMY2QNgEhG2B6MBpmv3nR1OW69xA02rbRWNV5aNDHjRZyyKidzIEpSLZ1HUZhBEd2E1QvPpeg0IHDp7AtO2SXFjisTylAqqqH--8tg-fUxcbB8sBrC_nKzyEDf93OV3Mj7K1Ttfzf8Oj_Of9BwSy1MA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7RUqlwAFqKCBTwgWO33Xj9iI8hNCoijSIR0t4srz0WOZBEefD7GXu3pRLiwG1l7Wq9_tYz38x4ZgA-1lJqpyQWKocZiQIULvZUQaqIBxMcutxFYTbS43Hv9tZM2mT1nAuDiPnwGZ6nyxzLD0u_S64y2uFKkcLXe_BYCsHLJl3r3qWSekgYqdvaQt3SXPQHA_oMsgK5OK-EFFVmkn_0Ty7T3_ZV-UsYZw0zfP6fc3sBz1oqyfoN9kfwCBfH8PRBgcGXMOkHt0oCjX0jLGiIDecpPM4m611yiLDr3ECaEXNls5xlzsbNufANu5lvf7DLnzWSaArsM2aRcgLfh5fTwVXR9lAofCXNtog-aGU8GUWh67RwxvAYpUFCRcSul1h657jztXFRa4zEjxTvYqV6HFPabPUK9hfLBb4GplSNpXQRe4Y4VHC1SYVhal4TQRdelx04u1tZu2pKZdhsYpTGNkDYBIRtgejAp7T697emOtd5gJbVttvGqspHhzxospdFRO9kCEpFsqrrMggjOnCSoHjwvgaFDpzegWnbTbmxxGR5KgZUVW_-8dgHOLyaXo_s6Mv461t4kqbbuFtOYX-73uE7OPC_tvPN-n3-834DNOLV4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Scaling+Filter+Pruning+Method+for+Vision+Networks+With+Embedded+Devices&rft.jtitle=IEEE+access&rft.au=Ko%2C+Hyunjun&rft.au=Kang%2C+Jin-Ku&rft.au=Kim%2C+Yongwoo&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=123771&rft.epage=123781&rft_id=info:doi/10.1109%2FACCESS.2024.3454329&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3454329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon