Lossless to Lossy Dual-Tree BEZW Compression for Hyperspectral Images
This paper proposes a lossless to lossy compression scheme for hyperspectral images based on dual-tree Binary Embedded Zerotree Wavelet (BEZW) algorithm. The algorithm adapts Karhunen-Loève Transform and Discrete Wavelet Transform to achieve 3-D integer reversible hybrid transform and decorrelate s...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 52; H. 9; S. 5765 - 5770 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.09.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper proposes a lossless to lossy compression scheme for hyperspectral images based on dual-tree Binary Embedded Zerotree Wavelet (BEZW) algorithm. The algorithm adapts Karhunen-Loève Transform and Discrete Wavelet Transform to achieve 3-D integer reversible hybrid transform and decorrelate spectral and spatial data. Since statistics of the hyperspectral image are not symmetrical, the asymmetrical dual-tree structure is introduced. The 3-D BEZW algorithm compresses hyperspectral images by implementing progressive bitplane coding. The lossless and lossy compression performance is compared with other state-of-the-art predictive coding and transform-based coding algorithms on Airborne Visible/Infrared Imaging Spectrometer images. Results show that the 3-D-BEZW lossless compression performance is comparable with the best predictive algorithms, while its computational cost is comparable with those of transform-based algorithms. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0196-2892 1558-0644 |
| DOI: | 10.1109/TGRS.2013.2292366 |