Subspace-restricted singular value decompositions for linear discrete ill-posed problems
The truncated singular value decomposition is a popular solution method for linear discrete ill-posed problems. These problems are numerically underdetermined. Therefore, it can be beneficial to incorporate information about the desired solution into the solution process. This paper describes a modi...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and applied mathematics Jg. 235; H. 4; S. 1053 - 1064 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier B.V
15.12.2010
Elsevier |
| Schlagworte: | |
| ISSN: | 0377-0427, 1879-1778 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The truncated singular value decomposition is a popular solution method for linear discrete ill-posed problems. These problems are numerically underdetermined. Therefore, it can be beneficial to incorporate information about the desired solution into the solution process. This paper describes a modification of the singular value decomposition that permits a specified linear subspace to be contained in the solution subspace for all truncations. Modifications that allow the range to contain a specified subspace, or that allow both the solution subspace and the range to contain specified subspaces also are described. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/j.cam.2010.06.016 |