Solving quadratic convex bilevel programming problems using a smoothing method

In this paper, we present a smoothing sequential quadratic programming to compute a solution of a quadratic convex bilevel programming problem. We use the Karush–Kuhn–Tucker optimality conditions of the lower level problem to obtain a nonsmooth optimization problem known to be a mathematical program...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 217; H. 15; S. 6680 - 6690
1. Verfasser: Etoa Etoa, Jean Bosco
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Inc 01.04.2011
Elsevier
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a smoothing sequential quadratic programming to compute a solution of a quadratic convex bilevel programming problem. We use the Karush–Kuhn–Tucker optimality conditions of the lower level problem to obtain a nonsmooth optimization problem known to be a mathematical program with equilibrium constraints; the complementary conditions of the lower level problem are then appended to the upper level objective function with a classical penalty. These complementarity conditions are not relaxed from the constraints and they are reformulated as a system of smooth equations by mean of semismooth equations using Fisher–Burmeister functional. Then, using a quadratic sequential programming method, we solve a series of smooth, regular problems that progressively approximate the nonsmooth problem. Some preliminary computational results are reported, showing that our approach is efficient.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2011.01.066