Nonlinear Transform Source-Channel Coding for Semantic Communications

In this paper, we propose a class of high-efficiency deep joint source-channel coding methods that can closely adapt to the source distribution under the nonlinear transform, it can be collected under the name nonlinear transform source-channel coding (NTSCC). In the considered model, the transmitte...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications Vol. 40; no. 8; pp. 2300 - 2316
Main Authors: Dai, Jincheng, Wang, Sixian, Tan, Kailin, Si, Zhongwei, Qin, Xiaoqi, Niu, Kai, Zhang, Ping
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0733-8716, 1558-0008
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we propose a class of high-efficiency deep joint source-channel coding methods that can closely adapt to the source distribution under the nonlinear transform, it can be collected under the name nonlinear transform source-channel coding (NTSCC). In the considered model, the transmitter first learns a nonlinear analysis transform to map the source data into latent space, then transmits the latent representation to the receiver via deep joint source-channel coding. Our model incorporates the nonlinear transform as a strong prior to effectively extract the source semantic features and provide side information for source-channel coding. Unlike existing conventional deep joint source-channel coding methods, the proposed NTSCC essentially learns both the source latent representation and an entropy model as the prior on the latent representation. Accordingly, novel adaptive rate transmission and hyperprior-aided codec refinement mechanisms are developed to upgrade deep joint source-channel coding. The whole system design is formulated as an optimization problem whose goal is to minimize the end-to-end transmission rate-distortion performance under established perceptual quality metrics. Across test image sources with various resolutions, we find that the proposed NTSCC transmission method generally outperforms both the analog transmission using the standard deep joint source-channel coding and the classical separation-based digital transmission. Notably, the proposed NTSCC method can potentially support future semantic communications due to its content-aware ability and perceptual optimization goal.
AbstractList In this paper, we propose a class of high-efficiency deep joint source-channel coding methods that can closely adapt to the source distribution under the nonlinear transform, it can be collected under the name nonlinear transform source-channel coding (NTSCC). In the considered model, the transmitter first learns a nonlinear analysis transform to map the source data into latent space, then transmits the latent representation to the receiver via deep joint source-channel coding. Our model incorporates the nonlinear transform as a strong prior to effectively extract the source semantic features and provide side information for source-channel coding. Unlike existing conventional deep joint source-channel coding methods, the proposed NTSCC essentially learns both the source latent representation and an entropy model as the prior on the latent representation. Accordingly, novel adaptive rate transmission and hyperprior-aided codec refinement mechanisms are developed to upgrade deep joint source-channel coding. The whole system design is formulated as an optimization problem whose goal is to minimize the end-to-end transmission rate-distortion performance under established perceptual quality metrics. Across test image sources with various resolutions, we find that the proposed NTSCC transmission method generally outperforms both the analog transmission using the standard deep joint source-channel coding and the classical separation-based digital transmission. Notably, the proposed NTSCC method can potentially support future semantic communications due to its content-aware ability and perceptual optimization goal.
Author Wang, Sixian
Tan, Kailin
Si, Zhongwei
Niu, Kai
Dai, Jincheng
Zhang, Ping
Qin, Xiaoqi
Author_xml – sequence: 1
  givenname: Jincheng
  orcidid: 0000-0002-0310-568X
  surname: Dai
  fullname: Dai, Jincheng
  email: daijincheng@bupt.edu.cn
  organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Sixian
  orcidid: 0000-0002-0621-1285
  surname: Wang
  fullname: Wang, Sixian
  email: sixian@bupt.edu.cn
  organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Kailin
  surname: Tan
  fullname: Tan, Kailin
  email: tankailin@bupt.edu.cn
  organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Zhongwei
  orcidid: 0000-0002-8286-2872
  surname: Si
  fullname: Si, Zhongwei
  email: sizhongwei@bupt.edu.cn
  organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 5
  givenname: Xiaoqi
  orcidid: 0000-0002-5788-0657
  surname: Qin
  fullname: Qin, Xiaoqi
  email: xiaoqiqin@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 6
  givenname: Kai
  orcidid: 0000-0002-8076-1867
  surname: Niu
  fullname: Niu, Kai
  email: niukai@bupt.edu.cn
  organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 7
  givenname: Ping
  orcidid: 0000-0002-0269-104X
  surname: Zhang
  fullname: Zhang, Ping
  email: pzhang@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNp9kDFPwzAQhS1UJNrCD0AskZhTznGc2GMVlQKqYGh3y3VscJXYxU4H_j0urRgYmE66e-_u3TdBI-edRugWwwxj4A8v63kzK6AoZgQzYFBcoDGmlOUAwEZoDDUhOatxdYUmMe4AcFmyYowWr9511mkZsk2QLhof-mztD0HpvPmQzukua3xr3XuWRtla99INVqVe3x-cVXKw3sVrdGlkF_XNuU7R5nGxaZ7y1dvyuZmvckUoH_K2koaXBEytoObbFEBLyRRgTYGCYpIrqiqDjdSwZRpajtMPtDUllopvyRTdn9bug_886DiIXUrq0kVRVIwzTNPapKpPKhV8jEEboezwk3MI0nYCgzgiE0dk4ohMnJElJ_7j3Afby_D1r-fu5LFa6189rzkmnJFvLy15Kw
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_JIOT_2023_3293154
crossref_primary_10_1109_TWC_2024_3520870
crossref_primary_10_1109_COMST_2024_3443193
crossref_primary_10_1109_LCOMM_2025_3544882
crossref_primary_10_1109_TWC_2024_3371775
crossref_primary_10_1109_ACCESS_2023_3291405
crossref_primary_10_1109_MCOM_001_2200099
crossref_primary_10_1109_TCOMM_2024_3386577
crossref_primary_10_1109_JIOT_2024_3444450
crossref_primary_10_3390_rs16214044
crossref_primary_10_1109_COMST_2024_3412852
crossref_primary_10_1117_1_JEI_34_2_023052
crossref_primary_10_1109_LSP_2024_3415967
crossref_primary_10_3390_electronics12224637
crossref_primary_10_1109_JSAC_2025_3559128
crossref_primary_10_1109_JSTARS_2024_3495023
crossref_primary_10_1109_JIOT_2025_3581393
crossref_primary_10_1109_TWC_2025_3543373
crossref_primary_10_1109_ACCESS_2025_3607699
crossref_primary_10_1109_MCOM_001_2300807
crossref_primary_10_1109_TNSM_2025_3563257
crossref_primary_10_1109_JSAC_2025_3531406
crossref_primary_10_1109_TWC_2024_3427675
crossref_primary_10_1109_TGCN_2023_3275199
crossref_primary_10_1109_JLT_2024_3485065
crossref_primary_10_1016_j_dcan_2025_08_005
crossref_primary_10_1109_JPROC_2024_3437730
crossref_primary_10_1109_JSAC_2022_3221948
crossref_primary_10_1109_TWC_2025_3553851
crossref_primary_10_1109_JIOT_2025_3529492
crossref_primary_10_1109_ACCESS_2023_3269848
crossref_primary_10_1109_TVT_2024_3443136
crossref_primary_10_1109_ACCESS_2024_3516814
crossref_primary_10_1109_TCOMM_2025_3529221
crossref_primary_10_1109_JIOT_2025_3586038
crossref_primary_10_1364_OE_568127
crossref_primary_10_1109_LWC_2024_3515656
crossref_primary_10_1109_MCOM_001_2400529
crossref_primary_10_1109_TWC_2023_3339239
crossref_primary_10_1109_JIOT_2024_3352737
crossref_primary_10_1109_TCCN_2024_3375506
crossref_primary_10_1038_s41598_024_70619_9
crossref_primary_10_1109_LWC_2023_3340657
crossref_primary_10_1109_TVT_2024_3456099
crossref_primary_10_1109_JSAC_2025_3531579
crossref_primary_10_1109_JSAC_2025_3531575
crossref_primary_10_1109_LCOMM_2023_3293805
crossref_primary_10_1109_LWC_2025_3554517
crossref_primary_10_3390_electronics14081666
crossref_primary_10_1109_JLT_2023_3328311
crossref_primary_10_1007_s11760_025_03826_0
crossref_primary_10_1109_ACCESS_2025_3532797
crossref_primary_10_1109_LCOMM_2025_3568427
crossref_primary_10_1109_TWC_2025_3543167
crossref_primary_10_1007_s11432_024_4415_7
crossref_primary_10_1109_JIOT_2025_3545667
crossref_primary_10_1109_JSAC_2024_3460084
crossref_primary_10_3390_e27040429
crossref_primary_10_1109_COMST_2024_3416309
crossref_primary_10_1109_JSTSP_2024_3405853
crossref_primary_10_1109_MWC_005_2300574
crossref_primary_10_1109_TWC_2024_3415363
crossref_primary_10_1109_TMC_2024_3418881
crossref_primary_10_1109_MWC_007_2200503
crossref_primary_10_1109_TCOMM_2024_3511949
crossref_primary_10_1186_s13634_022_00958_0
crossref_primary_10_1109_TGRS_2025_3576382
crossref_primary_10_1016_j_comnet_2025_111531
crossref_primary_10_1109_TCCN_2023_3306852
crossref_primary_10_1109_TMC_2024_3456856
crossref_primary_10_1016_j_iot_2024_101384
crossref_primary_10_1109_TCCN_2024_3511960
crossref_primary_10_1007_s11277_024_11517_1
crossref_primary_10_1109_JSTSP_2023_3304140
crossref_primary_10_1109_TCOMM_2024_3450877
crossref_primary_10_1109_TWC_2025_3535714
crossref_primary_10_1109_MWC_013_2300372
crossref_primary_10_1109_JSAC_2025_3559160
crossref_primary_10_1016_j_phycom_2025_102832
crossref_primary_10_1016_j_fmre_2023_06_003
crossref_primary_10_1109_LCOMM_2024_3391909
crossref_primary_10_1109_TVT_2023_3333350
crossref_primary_10_1109_JSAC_2023_3288246
crossref_primary_10_1631_FITEE_2300196
crossref_primary_10_1109_TMC_2024_3406375
crossref_primary_10_1109_TWC_2023_3349330
crossref_primary_10_3390_s24216772
crossref_primary_10_1109_TWC_2024_3422794
crossref_primary_10_1109_JSAC_2022_3223408
crossref_primary_10_1109_JSTSP_2023_3300509
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1109_JSAC_2025_3559158
crossref_primary_10_1109_MCOM_021_2300269
crossref_primary_10_1109_JIOT_2024_3409271
crossref_primary_10_1109_TCCN_2024_3384500
crossref_primary_10_1109_TWC_2024_3388329
crossref_primary_10_1109_TWC_2025_3539526
crossref_primary_10_1016_j_phycom_2025_102709
crossref_primary_10_1109_TCCN_2024_3392803
crossref_primary_10_1109_JSAC_2023_3288252
crossref_primary_10_1109_TCCN_2024_3438371
crossref_primary_10_1109_TWC_2024_3409735
crossref_primary_10_1109_JSAC_2025_3536557
crossref_primary_10_1109_LWC_2025_3584370
crossref_primary_10_1109_JSAC_2022_3221977
crossref_primary_10_1109_JSAC_2025_3531537
crossref_primary_10_1109_TCCN_2023_3294754
crossref_primary_10_1109_TWC_2024_3386052
crossref_primary_10_1109_TWC_2025_3532501
crossref_primary_10_1109_JIOT_2025_3553504
crossref_primary_10_1109_JSAC_2025_3559149
crossref_primary_10_3390_electronics12132755
crossref_primary_10_1109_JSEN_2025_3542396
crossref_primary_10_1109_JPROC_2024_3520707
crossref_primary_10_1109_COMST_2023_3300664
crossref_primary_10_1109_JSAC_2025_3531546
crossref_primary_10_32604_cmes_2023_046837
crossref_primary_10_1109_LWC_2025_3547527
crossref_primary_10_1109_TWC_2024_3384421
crossref_primary_10_1109_TWC_2024_3379244
crossref_primary_10_1109_LWC_2025_3526962
crossref_primary_10_1109_LWC_2025_3561012
Cites_doi 10.1109/TIT.2009.2021379
10.1109/MSP.2010.938080
10.1109/JSAC.2021.3078489
10.1155/2007/47517
10.1002/0471219282.eot142
10.1109/MCOM.2018.1700839
10.1007/s11263-020-01419-7
10.1109/ICCV48922.2021.00986
10.1109/TPAMI.2020.2988453
10.1002/j.1538-7305.1948.tb01338.x
10.1145/214762.214771
10.1109/JSAIT.2020.2987203
10.1109/ACSSC.2003.1292216
10.1016/j.eng.2021.11.003
10.1109/ICASSP.2018.8461983
10.1109/JSTSP.2020.3034501
10.1109/TCOMM.2018.2814603
10.1093/oso/9780198503682.001.0001
10.1109/TCSVT.2021.3082521
10.1109/CVPR.2018.00068
10.1109/TCCN.2019.2919300
10.1007/s11263-020-01316-z
10.1109/JSAC.2020.3036955
10.1109/49.947033
10.1109/TWC.2021.3090048
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2022.3180802
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 2316
ExternalDocumentID 10_1109_JSAC_2022_3180802
9791398
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 92067202; 62001049; 62071058; 61971062
  funderid: 10.13039/501100001809
– fundername: Major Key Project of PCL
  grantid: PCL2021A15
– fundername: Beijing Natural Science Foundation
  grantid: 4222012
  funderid: 10.13039/501100004826
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c359t-d6af9430f7c079b482eaa8c01e5050c8a9c5c6f1fae0b8e0d911555df41ac9b3
IEDL.DBID RIE
ISICitedReferencesCount 187
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838527500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Mon Jun 30 10:26:22 EDT 2025
Sat Nov 29 03:23:04 EST 2025
Tue Nov 18 22:42:23 EST 2025
Wed Aug 27 02:28:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-d6af9430f7c079b482eaa8c01e5050c8a9c5c6f1fae0b8e0d911555df41ac9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5788-0657
0000-0002-0310-568X
0000-0002-8076-1867
0000-0002-8286-2872
0000-0002-0269-104X
0000-0002-0621-1285
PQID 2689815079
PQPubID 85481
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_JSAC_2022_3180802
ieee_primary_9791398
proquest_journals_2689815079
crossref_primary_10_1109_JSAC_2022_3180802
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Kingma (ref17) 2013
ref12
ref15
Ballé (ref20) 2018
ref31
Bjontegaard (ref45)
ref11
Han (ref36) 2021
ref10
ref2
Choi (ref8)
ref1
ref16
ref38
ref18
(ref35) 2021
Kingma (ref43) 2014
(ref37) 1993
Ballé (ref19) 2016
Krizhevsky (ref14) 2009
Mirza (ref42) 2014
Paszke (ref44); 32
ref24
Raffel (ref33) 2020; 21
ref26
Hendrycks (ref34) 2016
ref25
ref41
ref22
Minnen (ref27)
ref28
Li (ref23); 34
ref29
ref7
Mentzer (ref21); 33
Bellard (ref39) 2018
ref9
ref4
ref3
ref6
Dosovitskiy (ref30) 2020
ref5
Lei Ba (ref32) 2016
ref40
References_xml – volume: 33
  start-page: 11913
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: High-fidelity generative image compression
– ident: ref29
  doi: 10.1109/TIT.2009.2021379
– volume: 32
  start-page: 8026
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref44
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref3
  doi: 10.1109/MSP.2010.938080
– ident: ref18
  doi: 10.1109/JSAC.2021.3078489
– year: 2014
  ident: ref42
  article-title: Conditional generative adversarial nets
  publication-title: arXiv:1411.1784
– ident: ref5
  doi: 10.1155/2007/47517
– ident: ref25
  doi: 10.1002/0471219282.eot142
– start-page: 1182
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref8
  article-title: Neural joint source-channel coding
– year: 2016
  ident: ref34
  article-title: Gaussian error linear units (GELUs)
  publication-title: arXiv:1606.08415
– ident: ref28
  doi: 10.1109/MCOM.2018.1700839
– volume: 21
  start-page: 1
  issue: 140
  year: 2020
  ident: ref33
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: J. Mach. Learn. Res.
– year: 2009
  ident: ref14
  article-title: Learning multiple layers of features from tiny images
– ident: ref41
  doi: 10.1007/s11263-020-01419-7
– year: 2020
  ident: ref30
  article-title: An image is worth $16\times16$ words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref31
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref22
  doi: 10.1109/TPAMI.2020.2988453
– ident: ref2
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref24
  doi: 10.1145/214762.214771
– ident: ref10
  doi: 10.1109/JSAIT.2020.2987203
– ident: ref40
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref1
  doi: 10.1016/j.eng.2021.11.003
– ident: ref7
  doi: 10.1109/ICASSP.2018.8461983
– ident: ref15
  doi: 10.1109/JSTSP.2020.3034501
– year: 2014
  ident: ref43
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref6
  doi: 10.1109/TCOMM.2018.2814603
– year: 2016
  ident: ref32
  article-title: Layer normalization
  publication-title: arXiv:1607.06450
– ident: ref26
  doi: 10.1093/oso/9780198503682.001.0001
– volume-title: Proc. VCEG-M33
  ident: ref45
  article-title: Calculation of average PSNR differences between RD-curves
– volume-title: BPG Image Format
  year: 2018
  ident: ref39
– ident: ref13
  doi: 10.1109/TCSVT.2021.3082521
– year: 2016
  ident: ref19
  article-title: End-to-end optimized image compression
  publication-title: arXiv:1611.01704
– ident: ref16
  doi: 10.1109/CVPR.2018.00068
– ident: ref9
  doi: 10.1109/TCCN.2019.2919300
– start-page: 10771
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Joint autoregressive and hierarchical priors for learned image compression
– ident: ref38
  doi: 10.1007/s11263-020-01316-z
– ident: ref12
  doi: 10.1109/JSAC.2020.3036955
– volume-title: Kodak PhotoCD Dataset
  year: 1993
  ident: ref37
– year: 2018
  ident: ref20
  article-title: Variational image compression with a scale hyperprior
  publication-title: arXiv:1802.01436
– volume-title: CLIC 2021: Challenge on Learned Image Compression
  year: 2021
  ident: ref35
– volume: 34
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Deep contextual video compression
– ident: ref4
  doi: 10.1109/49.947033
– ident: ref11
  doi: 10.1109/TWC.2021.3090048
– year: 2013
  ident: ref17
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv:1312.6114
– year: 2021
  ident: ref36
  article-title: Dynamic neural networks: A survey
  publication-title: arXiv:2102.04906
SSID ssj0014482
Score 2.7276733
Snippet In this paper, we propose a class of high-efficiency deep joint source-channel coding methods that can closely adapt to the source distribution under the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2300
SubjectTerms Channel coding
Codec
Coding
Design optimization
Digital transmission
Encoding
Entropy
Feature extraction
Image coding
Image quality
joint source-channel coding
Nonlinear analysis
nonlinear transform
perceptual loss
rate-distortion
Representations
Semantic communications
Semantics
Systems design
Transforms
Title Nonlinear Transform Source-Channel Coding for Semantic Communications
URI https://ieeexplore.ieee.org/document/9791398
https://www.proquest.com/docview/2689815079
Volume 40
WOSCitedRecordID wos000838527500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrbIHT2Js9pnkWEqLiBShPfS2JLNZKNSt9OHvN8luF4sieAtssixfspmZTL5vAO4FZpwxHRCdqIBEChVRgVIk4zLPEkyE5o4o_MrGYz6bibcGPNZcGK21u3ymn2zT5fKzJW7tUVlPMCtiyZvQZIyVXK06Y2DCDJcxYGFIbBBQZTB9Knovk_7ARIJBYAJUK6MY7NkgV1Tlx07szMvo5H8fdgrHlRvp9ct5P4OGLs7h6Ju4YBuG41IFQ6686c479SburJ5YTkGhF95gaU2XZx55E_1uQJ6jt0cZWV_AdDScDp5JVTSBYBiLDckSmVtJ9ZwhZUIZVLSUHKmvja9DkUuBMSa5n0tNFdc0M7tdHMdZHvkShQovoVUsC30FHkoW5wllKlJRxBgXppXlsS3pJzFA1gG6QzHFSlDc1rVYpC6woCK1wKcW-LQCvgMP9ZCPUk3jr85ti3TdsQK5A93dVKXV_7ZOg4QLbn1bcf37qBs4tO8ur-51obVZbfUtHODnZr5e3bml9AWz6Mc0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSDb3F99uBJjKbZtkmOsuziYy3C7sFbSaYpLOiu7MPfb5J2i6II3gJNaPmSZmYy-b4BuJCYC84NIybRjEQaNdFMa5ILVeQJJtIITxTu8TQVLy_yeQmuai6MMcZfPjPXrulz-fkY5-6o7EZyJ2IplmEljiIWlmytOmdgAw2fM-CtFnFhQJXDDKm8eejftm0syJgNUZ2QIvtmhXxZlR97sTcw3a3_fdo2bFaOZHBbzvwOLJnRLmx8kRfcg05a6mCoSTBY-KdB35_WE8cqGJnXoD12xiuwj4K-ebMwDzH4RhqZ7sOg2xm070hVNoFgK5YzkieqcKLqBUfKpbaoGKUE0tBYb4eiUBJjTIqwUIZqYWhu97s4jvMiChVK3TqAxmg8MocQoOJxkVCuIx1FnAtpW3kRu6J-ChnyJtAFihlWkuKussVr5kMLKjMHfOaAzyrgm3BZD3kv9TT-6rznkK47ViA34WQxVVn1x00zlggpnHcrj34fdQ5rd4OnXta7Tx-PYd29p7zIdwKN2WRuTmEVP2bD6eTML6tPPN7Kew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Transform+Source-Channel+Coding+for+Semantic+Communications&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Dai%2C+Jincheng&rft.au=Wang%2C+Sixian&rft.au=Tan%2C+Kailin&rft.au=Si%2C+Zhongwei&rft.date=2022-08-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=40&rft.issue=8&rft.spage=2300&rft.epage=2316&rft_id=info:doi/10.1109%2FJSAC.2022.3180802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2022_3180802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon